Files
OpenFOAM-12/applications/solvers/foamMultiRun/foamMultiRun.C
Henry Weller 00cb37652f foamRun,foamMultiRun: fvModels are now corrected directly
This ensures that all fvModels in all regions are updated before continuity is
predicted in any region so that inter-region mass transfers are included in the
region continuity equations.
2023-05-17 14:31:11 +01:00

192 lines
5.2 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2022-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
foamMultiRun
Description
Loads and executes an OpenFOAM solver modules for each region of a
multiregion simulation e.g. for conjugate heat transfer.
The region solvers are specified in the \c regionSolvers dictionary entry in
\c controlDict, containing a list of pairs of region and solver names,
e.g. for a two region case with one fluid region named
liquid and one solid region named tubeWall:
\verbatim
regionSolvers
{
liquid fluid;
tubeWall solid;
}
\endverbatim
The \c regionSolvers entry is a dictionary to support name substitutions to
simplify the specification of a single solver type for a set of
regions, e.g.
\verbatim
fluidSolver fluid;
solidSolver solid;
regionSolvers
{
tube1 $fluidSolver;
tubeWall1 solid;
tube2 $fluidSolver;
tubeWall2 solid;
tube3 $fluidSolver;
tubeWall3 solid;
}
\endverbatim
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
Usage
\b foamMultiRun [OPTION]
- \par -libs '(\"lib1.so\" ... \"libN.so\")'
Specify the additional libraries loaded
Example usage:
- To update and run a \c chtMultiRegion case add the following entries to
the controlDict:
\verbatim
application foamMultiRun;
regionSolvers
{
fluid fluid;
solid solid;
}
\endverbatim
then execute \c foamMultiRun
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "regionSolvers.H"
#include "pimpleMultiRegionControl.H"
#include "setDeltaT.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
// Create the region meshes and solvers
regionSolvers solvers(runTime);
// Create the outer PIMPLE loop and control structure
pimpleMultiRegionControl pimple(runTime, solvers);
// Set the initial time-step
setDeltaT(runTime, solvers);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< nl << "Starting time loop\n" << endl;
while (pimple.run(runTime))
{
forAll(solvers, i)
{
solvers[i].preSolve();
}
solvers.setGlobalPrefix();
// Adjust the time-step according to the solver maxDeltaT
adjustDeltaT(runTime, solvers);
runTime++;
Info<< "Time = " << runTime.userTimeName() << nl << endl;
// Multi-region PIMPLE corrector loop
while (pimple.loop())
{
forAll(solvers, i)
{
solvers[i].moveMesh();
}
forAll(solvers, i)
{
solvers[i].fvModels().correct();
}
forAll(solvers, i)
{
solvers[i].prePredictor();
}
forAll(solvers, i)
{
solvers[i].momentumPredictor();
}
while (pimple.correctEnergy())
{
forAll(solvers, i)
{
solvers[i].thermophysicalPredictor();
}
}
forAll(solvers, i)
{
solvers[i].pressureCorrector();
}
forAll(solvers, i)
{
solvers[i].postCorrector();
}
}
forAll(solvers, i)
{
solvers[i].postSolve();
}
solvers.setGlobalPrefix();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //