Files
OpenFOAM-12/applications/utilities/mesh/manipulation/createPatch/createPatch.C
Henry Weller 03207b1538 Coupled patch transformations: Removed the hideous and unphysical non-uniform transformation support
The implementation of the optional non-uniform transformations in coupled
patches was based on transform property lists which could be either length 0 for
no transformation, 1 for uniform transformation or n-faces for non-uniform
transformation.  This complexity was maintenance nightmare but kept to support
the hack in the original film implementation to partially work around the
conservation error.  Now that film has been re-implemented in fully mass
conservative form this unphysical non-uniform transformation support is no
longer needed and the coupled patch transformations have been completely
refactored to be simpler and more rational with single values for the
transformation properties and boolians to indicate which transformations are
needed.
2019-12-25 11:26:30 +00:00

873 lines
25 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2019 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
createPatch
Description
Utility to create patches out of selected boundary faces. Faces come either
from existing patches or from a faceSet.
More specifically it:
- creates new patches (from selected boundary faces). Synchronise faces
on coupled patches.
- synchronises points on coupled boundaries
- remove patches with 0 faces in them
\*---------------------------------------------------------------------------*/
#include "cyclicPolyPatch.H"
#include "syncTools.H"
#include "argList.H"
#include "polyMesh.H"
#include "Time.H"
#include "SortableList.H"
#include "OFstream.H"
#include "meshTools.H"
#include "faceSet.H"
#include "IOPtrList.H"
#include "polyTopoChange.H"
#include "polyModifyFace.H"
#include "wordReList.H"
#include "IOdictionary.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
defineTemplateTypeNameAndDebug(IOPtrList<dictionary>, 0);
}
void changePatchID
(
const polyMesh& mesh,
const label faceID,
const label patchID,
polyTopoChange& meshMod
)
{
const label zoneID = mesh.faceZones().whichZone(faceID);
bool zoneFlip = false;
if (zoneID >= 0)
{
const faceZone& fZone = mesh.faceZones()[zoneID];
zoneFlip = fZone.flipMap()[fZone.whichFace(faceID)];
}
meshMod.setAction
(
polyModifyFace
(
mesh.faces()[faceID], // face
faceID, // face ID
mesh.faceOwner()[faceID], // owner
-1, // neighbour
false, // flip flux
patchID, // patch ID
false, // remove from zone
zoneID, // zone ID
zoneFlip // zone flip
)
);
}
// Filter out the empty patches.
void filterPatches(polyMesh& mesh, const HashSet<word>& addedPatchNames)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Patches to keep
DynamicList<polyPatch*> allPatches(patches.size());
label nOldPatches = returnReduce(patches.size(), sumOp<label>());
// Copy old patches.
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
// Note: reduce possible since non-proc patches guaranteed in same order
if (!isA<processorPolyPatch>(pp))
{
// Add if
// - non zero size
// - or added from the createPatchDict
// - or cyclic (since referred to by other cyclic half or
// proccyclic)
if
(
addedPatchNames.found(pp.name())
|| returnReduce(pp.size(), sumOp<label>()) > 0
|| isA<coupledPolyPatch>(pp)
)
{
allPatches.append
(
pp.clone
(
patches,
allPatches.size(),
pp.size(),
pp.start()
).ptr()
);
}
else
{
Info<< "Removing zero-sized patch " << pp.name()
<< " type " << pp.type()
<< " at position " << patchi << endl;
}
}
}
// Copy non-empty processor patches
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
if (isA<processorPolyPatch>(pp))
{
if (pp.size())
{
allPatches.append
(
pp.clone
(
patches,
allPatches.size(),
pp.size(),
pp.start()
).ptr()
);
}
else
{
Info<< "Removing empty processor patch " << pp.name()
<< " at position " << patchi << endl;
}
}
}
label nAllPatches = returnReduce(allPatches.size(), sumOp<label>());
if (nAllPatches != nOldPatches)
{
Info<< "Removing patches." << endl;
allPatches.shrink();
mesh.removeBoundary();
mesh.addPatches(allPatches);
}
else
{
Info<< "No patches removed." << endl;
forAll(allPatches, i)
{
delete allPatches[i];
}
}
}
// Write current match for all patches the as OBJ files
void writeCyclicMatchObjs(const fileName& prefix, const polyMesh& mesh)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
forAll(patches, patchi)
{
if
(
isA<cyclicPolyPatch>(patches[patchi])
&& refCast<const cyclicPolyPatch>(patches[patchi]).owner()
)
{
const cyclicPolyPatch& cycPatch =
refCast<const cyclicPolyPatch>(patches[patchi]);
// Write patches
{
OFstream str(prefix+cycPatch.name() + ".obj");
Pout<< "Writing " << cycPatch.name()
<< " faces to " << str.name() << endl;
meshTools::writeOBJ
(
str,
cycPatch,
cycPatch.points()
);
}
const cyclicPolyPatch& nbrPatch = cycPatch.neighbPatch();
{
OFstream str(prefix+nbrPatch.name()+".obj");
Pout<< "Writing " << nbrPatch.name()
<< " faces to " << str.name() << endl;
meshTools::writeOBJ
(
str,
nbrPatch,
nbrPatch.points()
);
}
// Lines between corresponding face centres
OFstream str(prefix+cycPatch.name()+nbrPatch.name()+"_match.obj");
label vertI = 0;
Pout<< "Writing cyclic match as lines between face centres to "
<< str.name() << endl;
forAll(cycPatch, facei)
{
const point& fc0 = mesh.faceCentres()[cycPatch.start()+facei];
meshTools::writeOBJ(str, fc0);
vertI++;
const point& fc1 = mesh.faceCentres()[nbrPatch.start()+facei];
meshTools::writeOBJ(str, fc1);
vertI++;
str<< "l " << vertI-1 << ' ' << vertI << nl;
}
}
}
}
// Synchronise points on both sides of coupled boundaries.
template<class CombineOp>
void syncPoints
(
const polyMesh& mesh,
pointField& points,
const CombineOp& cop,
const point& nullValue
)
{
if (points.size() != mesh.nPoints())
{
FatalErrorInFunction
<< "Number of values " << points.size()
<< " is not equal to the number of points in the mesh "
<< mesh.nPoints() << abort(FatalError);
}
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Is there any coupled patch with transformation?
bool hasTransformation = false;
if (Pstream::parRun())
{
// Send
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
if
(
isA<processorPolyPatch>(pp)
&& pp.nPoints() > 0
&& refCast<const processorPolyPatch>(pp).owner()
)
{
const processorPolyPatch& procPatch =
refCast<const processorPolyPatch>(pp);
// Get data per patchPoint in neighbouring point numbers.
pointField patchInfo(procPatch.nPoints(), nullValue);
const labelList& meshPts = procPatch.meshPoints();
const labelList& nbrPts = procPatch.neighbPoints();
forAll(nbrPts, pointi)
{
label nbrPointi = nbrPts[pointi];
if (nbrPointi >= 0 && nbrPointi < patchInfo.size())
{
patchInfo[nbrPointi] = points[meshPts[pointi]];
}
}
OPstream toNbr
(
Pstream::commsTypes::blocking,
procPatch.neighbProcNo()
);
toNbr << patchInfo;
}
}
// Receive and set.
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
if
(
isA<processorPolyPatch>(pp)
&& pp.nPoints() > 0
&& !refCast<const processorPolyPatch>(pp).owner()
)
{
const processorPolyPatch& procPatch =
refCast<const processorPolyPatch>(pp);
pointField nbrPatchInfo(procPatch.nPoints());
{
// We do not know the number of points on the other side
// so cannot use Pstream::read.
IPstream fromNbr
(
Pstream::commsTypes::blocking,
procPatch.neighbProcNo()
);
fromNbr >> nbrPatchInfo;
}
// Null any value which is not on neighbouring processor
nbrPatchInfo.setSize(procPatch.nPoints(), nullValue);
if (!procPatch.parallel())
{
hasTransformation = true;
transformList(procPatch.forwardT(), nbrPatchInfo);
}
else if (procPatch.separated())
{
hasTransformation = true;
nbrPatchInfo -= procPatch.separation();
}
const labelList& meshPts = procPatch.meshPoints();
forAll(meshPts, pointi)
{
label meshPointi = meshPts[pointi];
points[meshPointi] = nbrPatchInfo[pointi];
}
}
}
}
// Do the cyclics.
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
if
(
isA<cyclicPolyPatch>(pp)
&& refCast<const cyclicPolyPatch>(pp).owner()
)
{
const cyclicPolyPatch& cycPatch =
refCast<const cyclicPolyPatch>(pp);
const edgeList& coupledPoints = cycPatch.coupledPoints();
const labelList& meshPts = cycPatch.meshPoints();
const cyclicPolyPatch& nbrPatch = cycPatch.neighbPatch();
const labelList& nbrMeshPts = nbrPatch.meshPoints();
pointField half0Values(coupledPoints.size());
forAll(coupledPoints, i)
{
const edge& e = coupledPoints[i];
label point0 = meshPts[e[0]];
half0Values[i] = points[point0];
}
if (!cycPatch.parallel())
{
hasTransformation = true;
transformList(cycPatch.reverseT(), half0Values);
}
else if (cycPatch.separated())
{
hasTransformation = true;
half0Values += cycPatch.separation();
}
forAll(coupledPoints, i)
{
const edge& e = coupledPoints[i];
label point1 = nbrMeshPts[e[1]];
points[point1] = half0Values[i];
}
}
}
//- Note: hasTransformation is only used for warning messages so
// reduction not strictly necessary.
// reduce(hasTransformation, orOp<bool>());
// Synchronize multiple shared points.
const globalMeshData& pd = mesh.globalData();
if (pd.nGlobalPoints() > 0)
{
if (hasTransformation)
{
WarningInFunction
<< "There are decomposed cyclics in this mesh with"
<< " transformations." << endl
<< "This is not supported. The result will be incorrect"
<< endl;
}
// Values on shared points.
pointField sharedPts(pd.nGlobalPoints(), nullValue);
forAll(pd.sharedPointLabels(), i)
{
label meshPointi = pd.sharedPointLabels()[i];
// Fill my entries in the shared points
sharedPts[pd.sharedPointAddr()[i]] = points[meshPointi];
}
// Combine on master.
Pstream::listCombineGather(sharedPts, cop);
Pstream::listCombineScatter(sharedPts);
// Now we will all have the same information. Merge it back with
// my local information.
forAll(pd.sharedPointLabels(), i)
{
label meshPointi = pd.sharedPointLabels()[i];
points[meshPointi] = sharedPts[pd.sharedPointAddr()[i]];
}
}
}
int main(int argc, char *argv[])
{
#include "addOverwriteOption.H"
#include "addRegionOption.H"
#include "addDictOption.H"
#include "setRootCase.H"
#include "createTime.H"
runTime.functionObjects().off();
Foam::word meshRegionName = polyMesh::defaultRegion;
args.optionReadIfPresent("region", meshRegionName);
const bool overwrite = args.optionFound("overwrite");
#include "createNamedPolyMesh.H"
const word oldInstance = mesh.pointsInstance();
const word dictName("createPatchDict");
#include "setSystemMeshDictionaryIO.H"
Info<< "Reading " << dictName << nl << endl;
IOdictionary dict(dictIO);
// Whether to synchronise points
const Switch pointSync(dict.lookup("pointSync"));
// Whether to write cyclic matches to .OBJ files
const Switch writeCyclicMatch
(
dict.lookupOrDefault("writeCyclicMatch", false)
);
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// If running parallel check same patches everywhere
patches.checkParallelSync(true);
if (writeCyclicMatch)
{
writeCyclicMatchObjs("initial_", mesh);
}
// Read patch construct info from dictionary
PtrList<dictionary> patchSources(dict.lookup("patches"));
HashSet<word> addedPatchNames;
forAll(patchSources, addedI)
{
const dictionary& dict = patchSources[addedI];
addedPatchNames.insert(dict.lookup("name"));
}
// 1. Add all new patches
// ~~~~~~~~~~~~~~~~~~~~~~
if (patchSources.size())
{
// Old and new patches.
DynamicList<polyPatch*> allPatches(patches.size()+patchSources.size());
label startFacei = mesh.nInternalFaces();
// Copy old patches.
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
if (!isA<processorPolyPatch>(pp))
{
allPatches.append
(
pp.clone
(
patches,
patchi,
pp.size(),
startFacei
).ptr()
);
startFacei += pp.size();
}
}
forAll(patchSources, addedI)
{
const dictionary& dict = patchSources[addedI];
word patchName(dict.lookup("name"));
label destPatchi = patches.findPatchID(patchName);
if (destPatchi == -1)
{
dictionary patchDict(dict.subDict("patchInfo"));
destPatchi = allPatches.size();
Info<< "Adding new patch " << patchName
<< " as patch " << destPatchi
<< " from " << patchDict << endl;
patchDict.set("nFaces", 0);
patchDict.set("startFace", startFacei);
// Add an empty patch.
allPatches.append
(
polyPatch::New
(
patchName,
patchDict,
destPatchi,
patches
).ptr()
);
}
else
{
Info<< "Patch '" << patchName << "' already exists. Only "
<< "moving patch faces - type will remain the same" << endl;
}
}
// Copy old patches.
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
if (isA<processorPolyPatch>(pp))
{
allPatches.append
(
pp.clone
(
patches,
patchi,
pp.size(),
startFacei
).ptr()
);
startFacei += pp.size();
}
}
allPatches.shrink();
mesh.removeBoundary();
mesh.addPatches(allPatches);
Info<< endl;
}
// 2. Repatch faces
// ~~~~~~~~~~~~~~~~
polyTopoChange meshMod(mesh);
forAll(patchSources, addedI)
{
const dictionary& dict = patchSources[addedI];
const word patchName(dict.lookup("name"));
label destPatchi = patches.findPatchID(patchName);
if (destPatchi == -1)
{
FatalErrorInFunction
<< "patch " << patchName << " not added. Problem."
<< abort(FatalError);
}
const word sourceType(dict.lookup("constructFrom"));
if (sourceType == "patches")
{
labelHashSet patchSources
(
patches.patchSet
(
wordReList(dict.lookup("patches"))
)
);
// Repatch faces of the patches.
forAllConstIter(labelHashSet, patchSources, iter)
{
const polyPatch& pp = patches[iter.key()];
Info<< "Moving faces from patch " << pp.name()
<< " to patch " << destPatchi << endl;
forAll(pp, i)
{
changePatchID
(
mesh,
pp.start() + i,
destPatchi,
meshMod
);
}
}
}
else if (sourceType == "set")
{
const word setName(dict.lookup("set"));
faceSet faces(mesh, setName);
Info<< "Read " << returnReduce(faces.size(), sumOp<label>())
<< " faces from faceSet " << faces.name() << endl;
// Sort (since faceSet contains faces in arbitrary order)
labelList faceLabels(faces.toc());
SortableList<label> patchFaces(faceLabels);
forAll(patchFaces, i)
{
label facei = patchFaces[i];
if (mesh.isInternalFace(facei))
{
FatalErrorInFunction
<< "Face " << facei << " specified in set "
<< faces.name()
<< " is not an external face of the mesh." << endl
<< "This application can only repatch existing boundary"
<< " faces." << exit(FatalError);
}
changePatchID
(
mesh,
facei,
destPatchi,
meshMod
);
}
}
else
{
FatalErrorInFunction
<< "Invalid source type " << sourceType << endl
<< "Valid source types are 'patches' 'set'" << exit(FatalError);
}
}
Info<< endl;
// Change mesh, use inflation to reforce calculation of transformation
// tensors.
Info<< "Doing topology modification to order faces." << nl << endl;
autoPtr<mapPolyMesh> map = meshMod.changeMesh(mesh, true);
mesh.movePoints(map().preMotionPoints());
if (writeCyclicMatch)
{
writeCyclicMatchObjs("coupled_", mesh);
}
// Synchronise points.
if (!pointSync)
{
Info<< "Not synchronising points." << nl << endl;
}
else
{
Info<< "Synchronising points." << nl << endl;
// This is a bit tricky. Both normal and position might be out and
// current separation also includes the normal
// ( separation_ = (nf&(Cr - Cf))*nf ).
// For cyclic patches:
// - for separated ones use user specified offset vector
forAll(mesh.boundaryMesh(), patchi)
{
const polyPatch& pp = mesh.boundaryMesh()[patchi];
if (pp.size() && isA<coupledPolyPatch>(pp))
{
const coupledPolyPatch& cpp =
refCast<const coupledPolyPatch>(pp);
if (cpp.separated())
{
Info<< "On coupled patch " << pp.name()
<< " separation was "
<< cpp.separation() << endl;
if (isA<cyclicPolyPatch>(pp) && pp.size())
{
const cyclicPolyPatch& cycpp =
refCast<const cyclicPolyPatch>(pp);
if (cycpp.transform() == cyclicPolyPatch::TRANSLATIONAL)
{
// Force to wanted separation
Info<< "On cyclic translation patch " << pp.name()
<< " forcing uniform separation of "
<< cycpp.separationVector() << endl;
const_cast<vector&>(cpp.separation()) =
cycpp.separationVector();
}
else
{
const cyclicPolyPatch& nbr = cycpp.neighbPatch();
const_cast<vector&>(cpp.separation()) =
nbr[0].centre(mesh.points())
- cycpp[0].centre(mesh.points());
}
}
Info<< "On coupled patch " << pp.name()
<< " forcing uniform separation of "
<< cpp.separation() << endl;
}
else if (!cpp.parallel())
{
Info<< "On coupled patch " << pp.name()
<< " forcing uniform rotation of "
<< cpp.forwardT() << endl;
// const_cast<tensorField&>
// (
// cpp.forwardT()
// ).setSize(1);
// const_cast<tensorField&>
// (
// cpp.reverseT()
// ).setSize(1);
}
}
}
Info<< "Synchronising points." << endl;
pointField newPoints(mesh.points());
syncPoints
(
mesh,
newPoints,
minMagSqrEqOp<vector>(),
point(great, great, great)
);
scalarField diff(mag(newPoints-mesh.points()));
Info<< "Points changed by average:" << gAverage(diff)
<< " max:" << gMax(diff) << nl << endl;
mesh.movePoints(newPoints);
}
// 3. Remove zeros-sized patches
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Info<< "Removing patches with no faces in them." << nl<< endl;
filterPatches(mesh, addedPatchNames);
if (writeCyclicMatch)
{
writeCyclicMatchObjs("final_", mesh);
}
// Set the precision of the points data to 10
IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision()));
if (!overwrite)
{
runTime++;
}
else
{
mesh.setInstance(oldInstance);
}
// Write resulting mesh
Info<< "Writing repatched mesh to " << runTime.timeName() << nl << endl;
mesh.write();
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //