Files
OpenFOAM-12/applications/utilities/parallelProcessing/decomposePar/fvFieldDecomposerTemplates.C
Will Bainbridge 71ccf51ba5 decomposePar, reconstructPar: Do all regions simultaneously
DecomposePar and reconstructPar now interleave the processing of
multiple regions. This means that with the -allRegions option, the
earlier times are completed in their entirety before later times are
considered. It also lets regions to access each other during
decomposition and reconstruction, which will be important for
non-conformal region interfaces.

To aid interpretation of the log, region prefixing is now used by both
utilities in the same way as is done by foamMultiRun.

DecomposePar has been overhauled so that it matches reconstructPar much
more closely, both in terms of output and of iteration sequence. All
meshes and addressing are loaded simultaneously and each field is
considered in turn. Previously, all the fields were loaded, and each
process and addressing set was considered in turn. This new strategy
optimises memory usage for cases with lots of fields.
2023-08-01 14:25:28 +01:00

551 lines
16 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "fvFieldDecomposer.H"
#include "processorFvPatchField.H"
#include "processorFvsPatchField.H"
#include "processorCyclicFvPatchField.H"
#include "processorCyclicFvsPatchField.H"
#include "emptyFvPatchFields.H"
#include "stringOps.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class Type>
Foam::tmp<Foam::Field<Type>> Foam::fvFieldDecomposer::mapCellToFace
(
const labelUList& owner,
const labelUList& neighbour,
const Field<Type>& field,
const labelUList& addressing
)
{
tmp<Field<Type>> tfld(new Field<Type>(addressing.size()));
Field<Type>& fld = tfld.ref();
forAll(addressing, i)
{
fld[i] =
field
[
addressing[i] > 0
? neighbour[addressing[i] - 1]
: owner[- addressing[i] - 1]
];
}
return tfld;
}
template<class Type>
Foam::tmp<Foam::Field<Type>> Foam::fvFieldDecomposer::mapFaceToFace
(
const Field<Type>& field,
const labelUList& addressing,
const bool isFlux
)
{
tmp<Field<Type>> tfld(new Field<Type>(addressing.size()));
Field<Type>& fld = tfld.ref();
forAll(addressing, i)
{
fld[i] =
(isFlux && addressing[i] < 0 ? -1 : +1)
*field[mag(addressing[i]) - 1];
}
return tfld;
}
template<class Type>
Foam::PtrList<typename Foam::VolField<Type>::Internal>
Foam::fvFieldDecomposer::decomposeVolInternalField
(
const IOobject& fieldIoObject
) const
{
// Read the field
const typename VolField<Type>::Internal field
(
IOobject
(
fieldIoObject.name(),
completeMesh_.time().name(),
completeMesh_,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
completeMesh_
);
// Construct the processor fields
PtrList<typename VolField<Type>::Internal> procFields(procMeshes_.size());
forAll(procMeshes_, proci)
{
// Create the processor field with the dummy patch fields
procFields.set
(
proci,
new typename VolField<Type>::Internal
(
IOobject
(
fieldIoObject.name(),
procMeshes_[proci].time().name(),
procMeshes_[proci],
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
procMeshes_[proci],
field.dimensions(),
Field<Type>(field.field(), cellProcAddressing_[proci])
)
);
}
return procFields;
}
template<class Type>
Foam::PtrList<Foam::VolField<Type>>
Foam::fvFieldDecomposer::decomposeVolField
(
const IOobject& fieldIoObject
) const
{
// Read the field
const VolField<Type> field
(
IOobject
(
fieldIoObject.name(),
completeMesh_.time().name(),
completeMesh_,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
completeMesh_
);
// Construct the processor fields
PtrList<VolField<Type>> procFields(procMeshes_.size());
forAll(procMeshes_, proci)
{
// Create dummy patch fields
PtrList<fvPatchField<Type>> patchFields
(
procMeshes_[proci].boundary().size()
);
forAll(procMeshes_[proci].boundary(), procPatchi)
{
patchFields.set
(
procPatchi,
fvPatchField<Type>::New
(
calculatedFvPatchField<Type>::typeName,
procMeshes_[proci].boundary()[procPatchi],
DimensionedField<Type, volMesh>::null()
)
);
}
// Create the processor field with the dummy patch fields
procFields.set
(
proci,
new VolField<Type>
(
IOobject
(
fieldIoObject.name(),
procMeshes_[proci].time().name(),
procMeshes_[proci],
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
procMeshes_[proci],
field.dimensions(),
Field<Type>(field.primitiveField(), cellProcAddressing_[proci]),
patchFields
)
);
// Alias the created proc field
VolField<Type>& vf = procFields[proci];
// Change the patch fields to the correct type using a mapper
// constructor (with reference to the now correct internal field)
typename VolField<Type>::Boundary& bf = vf.boundaryFieldRef();
forAll(bf, procPatchi)
{
const fvPatch& procPatch =
procMeshes_[proci].boundary()[procPatchi];
const label completePatchi = completePatchID(proci, procPatchi);
if (completePatchi == procPatchi)
{
bf.set
(
procPatchi,
fvPatchField<Type>::New
(
field.boundaryField()[completePatchi],
procPatch,
vf(),
patchFieldDecomposers_[proci][procPatchi]
)
);
}
else if (isA<processorCyclicFvPatch>(procPatch))
{
if (field.boundaryField()[completePatchi].overridesConstraint())
{
OStringStream str;
str << "\nThe field \"" << field.name()
<< "\" on cyclic patch \""
<< field.boundaryField()[completePatchi].patch().name()
<< "\" cannot be decomposed as it is not a cyclic "
<< "patch field. A \"patchType cyclic;\" setting has "
<< "been used to override the cyclic patch type.\n\n"
<< "Cyclic patches like this with non-cyclic boundary "
<< "conditions should be confined to a single "
<< "processor using decomposition constraints.";
FatalErrorInFunction
<< stringOps::breakIntoIndentedLines(str.str()).c_str()
<< exit(FatalError);
}
const label nbrCompletePatchi =
refCast<const processorCyclicFvPatch>(procPatch)
.referPatch().nbrPatchID();
bf.set
(
procPatchi,
new processorCyclicFvPatchField<Type>
(
procPatch,
vf(),
mapCellToFace
(
labelUList(),
completeMesh_.lduAddr().patchAddr
(
nbrCompletePatchi
),
field.primitiveField(),
faceProcAddressingBf_[proci][procPatchi]
)
)
);
}
else if (isA<processorFvPatch>(procPatch))
{
bf.set
(
procPatchi,
new processorFvPatchField<Type>
(
procPatch,
vf(),
mapCellToFace
(
completeMesh_.owner(),
completeMesh_.neighbour(),
field.primitiveField(),
faceProcAddressingBf_[proci][procPatchi]
)
)
);
}
else
{
FatalErrorInFunction
<< "Unknown type." << abort(FatalError);
}
}
}
return procFields;
}
template<class Type>
Foam::PtrList<Foam::SurfaceField<Type>>
Foam::fvFieldDecomposer::decomposeFvSurfaceField
(
const IOobject& fieldIoObject
) const
{
// Read the field
const SurfaceField<Type> field
(
IOobject
(
fieldIoObject.name(),
completeMesh_.time().name(),
completeMesh_,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
completeMesh_
);
// Construct the processor fields
PtrList<SurfaceField<Type>> procFields(procMeshes_.size());
forAll(procMeshes_, proci)
{
const SubList<label> faceAddressingIf
(
faceProcAddressing_[proci],
procMeshes_[proci].nInternalFaces()
);
// Create dummy patch fields
PtrList<fvsPatchField<Type>> patchFields
(
procMeshes_[proci].boundary().size()
);
forAll(procMeshes_[proci].boundary(), procPatchi)
{
patchFields.set
(
procPatchi,
fvsPatchField<Type>::New
(
calculatedFvsPatchField<Type>::typeName,
procMeshes_[proci].boundary()[procPatchi],
DimensionedField<Type, surfaceMesh>::null()
)
);
}
// Create the processor field with the dummy patch fields
procFields.set
(
proci,
new SurfaceField<Type>
(
IOobject
(
field.name(),
procMeshes_[proci].time().name(),
procMeshes_[proci],
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
procMeshes_[proci],
field.dimensions(),
mapFaceToFace
(
field,
faceAddressingIf,
isFlux(field)
),
patchFields
)
);
// Alias the created proc field
SurfaceField<Type>& sf = procFields[proci];
// Change the patch fields to the correct type using a mapper
// constructor (with reference to the now correct internal field)
typename SurfaceField<Type>::Boundary& bf = sf.boundaryFieldRef();
forAll(procMeshes_[proci].boundary(), procPatchi)
{
const fvPatch& procPatch =
procMeshes_[proci].boundary()[procPatchi];
const label completePatchi = completePatchID(proci, procPatchi);
if (completePatchi == procPatchi)
{
bf.set
(
procPatchi,
fvsPatchField<Type>::New
(
field.boundaryField()[procPatchi],
procPatch,
sf(),
patchFieldDecomposers_[proci][procPatchi]
)
);
}
else if (isA<processorCyclicFvPatch>(procPatch))
{
bf.set
(
procPatchi,
new processorCyclicFvsPatchField<Type>
(
procPatch,
sf(),
mapFaceToFace
(
field.boundaryField()[completePatchi],
faceProcAddressingBf_[proci][procPatchi],
isFlux(field)
)
)
);
}
else if (isA<processorFvPatch>(procPatch))
{
bf.set
(
procPatchi,
new processorFvsPatchField<Type>
(
procPatch,
sf(),
mapFaceToFace
(
field.primitiveField(),
faceProcAddressingBf_[proci][procPatchi],
isFlux(field)
)
)
);
}
else
{
FatalErrorInFunction
<< "Unknown type." << abort(FatalError);
}
}
}
return procFields;
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
void Foam::fvFieldDecomposer::decomposeVolInternalFields
(
const IOobjectList& objects
)
{
const word& fieldClassName = VolField<Type>::Internal::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< nl << " Decomposing " << fieldClassName << "s" << nl << endl;
forAllConstIter(IOobjectList, fields, fieldIter)
{
Info<< " " << fieldIter()->name() << endl;
PtrList<typename VolField<Type>::Internal> procFields =
decomposeVolInternalField<Type>(*fieldIter());
forAll(procFields, proci)
{
procFields[proci].write();
}
}
}
}
template<class Type>
void Foam::fvFieldDecomposer::decomposeVolFields
(
const IOobjectList& objects
)
{
const word& fieldClassName = VolField<Type>::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< nl << " Decomposing " << fieldClassName << "s" << nl << endl;
forAllConstIter(IOobjectList, fields, fieldIter)
{
Info<< " " << fieldIter()->name() << endl;
PtrList<VolField<Type>> procFields =
decomposeVolField<Type>(*fieldIter());
forAll(procFields, proci)
{
procFields[proci].write();
}
}
}
}
template<class Type>
void Foam::fvFieldDecomposer::decomposeFvSurfaceFields
(
const IOobjectList& objects
)
{
const word& fieldClassName = SurfaceField<Type>::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< nl << " Decomposing " << fieldClassName << "s" << nl << endl;
forAllConstIter(IOobjectList, fields, fieldIter)
{
Info<< " " << fieldIter()->name() << endl;
PtrList<SurfaceField<Type>> procFields =
decomposeFvSurfaceField<Type>(*fieldIter());
forAll(procFields, proci)
{
procFields[proci].write();
}
}
}
}
// ************************************************************************* //