Files
OpenFOAM-12/applications/test/rigidBodyDynamics/Test-rigidBodyDynamics.C
Henry Weller 5eaf74c3a4 dictionary scalar lookup: simplified syntax using the type templated lookup function
Replaced
    readScalar(dict.lookup("name"))
with
    dict.lookup<scalar>("name")
2019-11-27 14:56:32 +00:00

190 lines
6.3 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2018-2019 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
Test-rigidBodyDynamics
Description
Does an RBD simulation and outputs the result as a gnuplot animation
\*---------------------------------------------------------------------------*/
#include "rigidBodyMotion.H"
#include "IFstream.H"
#include "OFstream.H"
#include "boundBox.H"
#include "argList.H"
using namespace Foam;
using namespace RBD;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
// Create the input dictionary
argList::validArgs.append("dictionary");
argList args(argc, argv);
const word dictName(args[1]);
Info<< "Reading " << dictName << nl << endl;
const dictionary dict = IFstream(dictName)();
// Read the model, time controls and plot outlines from the dictionary
rigidBodyMotion motion(dict);
const scalar deltaT(dict.lookup<scalar>("deltaT"));
const label nIter(dict.lookupOrDefault<label>("nIter", 1));
const scalar endTime(dict.lookup<scalar>("endTime"));
const dictionary& bodiesDict = dict.subDict("bodies");
List<vectorField> outlines;
labelList outlineBodyIDs;
forAll(motion.bodies(), bodyID)
{
const word& bodyName = motion.bodies()[bodyID].name();
if (bodiesDict.isDict(bodyName))
{
const dictionary& bodyDict = bodiesDict.subDict(bodyName);
if (bodyDict.found("outline"))
{
outlines.append(vectorField(bodyDict.lookup("outline")));
outlineBodyIDs.append(bodyID);
}
}
}
Info<< endl;
// Set up motion fields
const label nDoF = motion.nDoF();
Info<< nDoF << " degrees of freedom" << nl << endl;
scalarField tau(nDoF, Zero);
Field<spatialVector> fx(motion.nBodies(), Zero);
// Initialise output files and the bound box
OFstream dataFile(dictName + ".dat");
OFstream animationFile(dictName + ".animate");
boundBox animationBox;
dataFile<< "# time(s)";
forAll(motion.state().q(), stateI)
{
dataFile << " q_" << stateI;
}
forAll(motion.state().q(), stateI)
{
dataFile << " qDot_" << stateI;
}
forAll(motion.state().q(), stateI)
{
dataFile << " qDdot_" << stateI;
}
dataFile<< endl;
animationFile
<< "#!/usr/bin/env gnuplot" << endl << endl
<< "$data << end" << endl;
// Run the RBD simulation
for (scalar t = 0; t <= endTime + 0.5*deltaT; t += deltaT)
{
Info().stdStream() << "\33[2KTime = " << t << '\r' << std::flush;
motion.newTime();
for (label i = 0; i < nIter; ++ i)
{
motion.solve(t + deltaT, deltaT, tau, fx);
}
// Write the current state
dataFile<< t;
forAll(motion.state().q(), stateI)
{
dataFile << ' ' << motion.state().q()[stateI];
}
forAll(motion.state().q(), stateI)
{
dataFile << ' ' << motion.state().qDot()[stateI];
}
forAll(motion.state().q(), stateI)
{
dataFile << ' ' << motion.state().qDdot()[stateI];
}
dataFile<< endl;
// Write the bodies' outlines at the current transformation
forAll(outlines, outlineI)
{
const label bodyID = outlineBodyIDs[outlineI];
const spatialTransform& invX0 = motion.X0(bodyID).inv();
forAll(outlines[outlineI], i)
{
const vector p = invX0.transformPoint(outlines[outlineI][i]);
animationFile<< t << ' ' << p.x() << ' ' << p.y() << endl;
animationBox.min() = min(animationBox.min(), p);
animationBox.max() = max(animationBox.max(), p);
}
animationFile<< endl;
}
}
Info<< nl << endl;
// Expand the bound box
{
const vector c = animationBox.midpoint(), d = animationBox.span();
if (d.x() < d.y()/2)
{
animationBox.min().x() = c.x() - d.y()/4;
animationBox.max().x() = c.x() + d.y()/4;
}
else if (d.y() < d.x()/2)
{
animationBox.min().y() = c.y() - d.x()/4;
animationBox.max().y() = c.y() + d.x()/4;
}
}
// Write the animation commands
animationFile
<< "end" << endl << endl
<< "set size ratio -1" << endl
<< "do for [i=1:" << label(endTime/deltaT - 0.5) << "] {" << endl
<< " set title sprintf('\%g s', i*" << deltaT << ')' << endl
<< " plot ["
<< animationBox.min().x() << ':' << animationBox.max().x() << "]["
<< animationBox.min().y() << ':' << animationBox.max().y() << ']';
forAll(outlines, outlineI)
{
const label bodyID = outlineBodyIDs[outlineI];
animationFile<< (outlineI ? "," : "") << " \\" << endl
<< " '$data' us 2:3 every :::"
<< outlines.size() << "*i+" << outlineI << "::"
<< outlines.size() << "*i+" << outlineI << " w l lw 2 "
<< "t '" << motion.bodies()[bodyID].name() << '\'';
}
animationFile<< endl << " pause " << deltaT << endl << "}" << endl;
Info<< "End" << nl << endl;
return 0;
}
// ************************************************************************* //