Files
OpenFOAM-12/applications/solvers/modules/incompressibleVoF/incompressibleTwoPhaseMixture/incompressibleTwoPhaseMixture.C
Henry Weller 06893a0bc6 VoFSolver: New base-class for twoPhaseVoFSolver and multiphaseVoFSolver
Much of the VoF functionality, particularly relating to momentum solution, is
independent of the number of phases and it is useful to hold this generic VoF
data and functionality in an abstract base-class and derive twoPhaseVoFSolver
and multiphaseVoFSolver from it, adding two-phase and multiphase functionality
respectively.
2023-01-06 16:51:10 +00:00

174 lines
4.3 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "incompressibleTwoPhaseMixture.H"
#include "surfaceInterpolate.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(incompressibleTwoPhaseMixture, 0);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::incompressibleTwoPhaseMixture::incompressibleTwoPhaseMixture
(
const fvMesh& mesh
)
:
twoPhaseVoFMixture(mesh),
nuModel1_(viscosityModel::New(mesh, phase1Name())),
nuModel2_(viscosityModel::New(mesh, phase2Name())),
rho1_("rho", dimDensity, nuModel1_()),
rho2_("rho", dimDensity, nuModel2_()),
rho_
(
IOobject
(
"rho",
mesh.time().name(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("rho", dimDensity, 0)
),
nu_
(
IOobject
(
"nu",
mesh.time().name(),
mesh
),
mesh,
dimensionedScalar(dimViscosity, 0),
calculatedFvPatchScalarField::typeName
)
{
correct();
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField>
Foam::incompressibleTwoPhaseMixture::mu() const
{
const volScalarField limitedAlpha1
(
min(max(alpha1(), scalar(0)), scalar(1))
);
return volScalarField::New
(
"mu",
limitedAlpha1*rho1_*nuModel1_->nu()
+ (scalar(1) - limitedAlpha1)*rho2_*nuModel2_->nu()
);
}
Foam::tmp<Foam::surfaceScalarField>
Foam::incompressibleTwoPhaseMixture::muf() const
{
const surfaceScalarField alpha1f
(
min(max(fvc::interpolate(alpha1()), scalar(0)), scalar(1))
);
return surfaceScalarField::New
(
"muf",
alpha1f*rho1_*fvc::interpolate(nuModel1_->nu())
+ (scalar(1) - alpha1f)*rho2_*fvc::interpolate(nuModel2_->nu())
);
}
Foam::tmp<Foam::surfaceScalarField>
Foam::incompressibleTwoPhaseMixture::nuf() const
{
const surfaceScalarField alpha1f
(
min(max(fvc::interpolate(alpha1()), scalar(0)), scalar(1))
);
return surfaceScalarField::New
(
"nuf",
(
alpha1f*rho1_*fvc::interpolate(nuModel1_->nu())
+ (scalar(1) - alpha1f)*rho2_*fvc::interpolate(nuModel2_->nu())
)/(alpha1f*rho1_ + (scalar(1) - alpha1f)*rho2_)
);
}
bool Foam::incompressibleTwoPhaseMixture::read()
{
if (twoPhaseVoFMixture::read())
{
nuModel1_->lookup("rho") >> rho1_;
nuModel2_->lookup("rho") >> rho2_;
return true;
}
else
{
return false;
}
}
void Foam::incompressibleTwoPhaseMixture::correct()
{
rho_ = alpha1()*rho1_ + alpha2()*rho2_;
nuModel1_->correct();
nuModel2_->correct();
const volScalarField limitedAlpha1
(
"limitedAlpha1",
min(max(alpha1(), scalar(0)), scalar(1))
);
// Average kinematic viscosity calculated from dynamic viscosity
nu_ = mu()/(limitedAlpha1*rho1_ + (scalar(1) - limitedAlpha1)*rho2_);
}
// ************************************************************************* //