Files
OpenFOAM-12/src/finiteVolume/interpolation/surfaceInterpolation/schemes/linearUpwind/linearUpwind.C
Henry Weller 0c66eb9f94 finiteVolume: Use the GeometricField::New method to construct temporary fields
Avoids database registration of temporary fields, simplifies the code and
improves maintainability.
2019-07-18 09:32:12 +01:00

230 lines
6.7 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2019 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "linearUpwind.H"
#include "fvMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::fvsPatchField, Foam::surfaceMesh>>
Foam::linearUpwind<Type>::correction
(
const GeometricField<Type, fvPatchField, volMesh>& vf
) const
{
const fvMesh& mesh = this->mesh();
tmp<GeometricField<Type, fvsPatchField, surfaceMesh>> tsfCorr
(
GeometricField<Type, fvsPatchField, surfaceMesh>::New
(
"linearUpwind::correction(" + vf.name() + ')',
mesh,
dimensioned<Type>(vf.name(), vf.dimensions(), Zero)
)
);
GeometricField<Type, fvsPatchField, surfaceMesh>& sfCorr = tsfCorr.ref();
const surfaceScalarField& faceFlux = this->faceFlux_;
const labelList& owner = mesh.owner();
const labelList& neighbour = mesh.neighbour();
const volVectorField& C = mesh.C();
const surfaceVectorField& Cf = mesh.Cf();
tmp<fv::gradScheme<scalar>> gradScheme_
(
fv::gradScheme<scalar>::New
(
mesh,
mesh.gradScheme(gradSchemeName_)
)
);
for (direction cmpt = 0; cmpt < pTraits<Type>::nComponents; cmpt++)
{
tmp<volVectorField> tgradVf =
gradScheme_().grad(vf.component(cmpt), gradSchemeName_);
const volVectorField& gradVf = tgradVf();
forAll(faceFlux, facei)
{
const label celli =
(faceFlux[facei] > 0) ? owner[facei] : neighbour[facei];
setComponent(sfCorr[facei], cmpt) =
(Cf[facei] - C[celli]) & gradVf[celli];
}
typename GeometricField<Type, fvsPatchField, surfaceMesh>::
Boundary& bSfCorr = sfCorr.boundaryFieldRef();
forAll(bSfCorr, patchi)
{
fvsPatchField<Type>& pSfCorr = bSfCorr[patchi];
if (pSfCorr.coupled())
{
const labelUList& pOwner = mesh.boundary()[patchi].faceCells();
const vectorField& pCf = Cf.boundaryField()[patchi];
const scalarField& pFaceFlux = faceFlux.boundaryField()[patchi];
const vectorField pGradVfNei
(
gradVf.boundaryField()[patchi].patchNeighbourField()
);
// Build the d-vectors
const vectorField pd
(
Cf.boundaryField()[patchi].patch().delta()
);
forAll(pOwner, facei)
{
label own = pOwner[facei];
if (pFaceFlux[facei] > 0)
{
setComponent(pSfCorr[facei], cmpt) =
(pCf[facei] - C[own])
& gradVf[own];
}
else
{
setComponent(pSfCorr[facei], cmpt) =
(pCf[facei] - pd[facei] - C[own])
& pGradVfNei[facei];
}
}
}
}
}
return tsfCorr;
}
template<>
Foam::tmp<Foam::surfaceVectorField>
Foam::linearUpwind<Foam::vector>::correction
(
const volVectorField& vf
) const
{
const fvMesh& mesh = this->mesh();
tmp<surfaceVectorField> tsfCorr
(
surfaceVectorField::New
(
"linearUpwind::correction(" + vf.name() + ')',
mesh,
dimensioned<vector>(vf.name(), vf.dimensions(), Zero)
)
);
surfaceVectorField& sfCorr = tsfCorr.ref();
const surfaceScalarField& faceFlux = this->faceFlux_;
const labelList& owner = mesh.owner();
const labelList& neighbour = mesh.neighbour();
const volVectorField& C = mesh.C();
const surfaceVectorField& Cf = mesh.Cf();
tmp<fv::gradScheme<vector>> gradScheme_
(
fv::gradScheme<vector>::New
(
mesh,
mesh.gradScheme(gradSchemeName_)
)
);
tmp<volTensorField> tgradVf = gradScheme_().grad(vf, gradSchemeName_);
const volTensorField& gradVf = tgradVf();
forAll(faceFlux, facei)
{
const label celli =
(faceFlux[facei] > 0) ? owner[facei] : neighbour[facei];
sfCorr[facei] = (Cf[facei] - C[celli]) & gradVf[celli];
}
typename surfaceVectorField::Boundary& bSfCorr = sfCorr.boundaryFieldRef();
forAll(bSfCorr, patchi)
{
fvsPatchVectorField& pSfCorr = bSfCorr[patchi];
if (pSfCorr.coupled())
{
const labelUList& pOwner = mesh.boundary()[patchi].faceCells();
const vectorField& pCf = Cf.boundaryField()[patchi];
const scalarField& pFaceFlux = faceFlux.boundaryField()[patchi];
const tensorField pGradVfNei
(
gradVf.boundaryField()[patchi].patchNeighbourField()
);
// Build the d-vectors
vectorField pd(Cf.boundaryField()[patchi].patch().delta());
forAll(pOwner, facei)
{
label own = pOwner[facei];
if (pFaceFlux[facei] > 0)
{
pSfCorr[facei] = (pCf[facei] - C[own]) & gradVf[own];
}
else
{
pSfCorr[facei] =
(pCf[facei] - pd[facei] - C[own]) & pGradVfNei[facei];
}
}
}
}
return tsfCorr;
}
namespace Foam
{
makelimitedSurfaceInterpolationScheme(linearUpwind)
}
// ************************************************************************* //