Files
OpenFOAM-12/applications/solvers/modules/isothermalFluid/correctBuoyantPressure.C
2023-01-24 22:01:34 +00:00

277 lines
7.8 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2022-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "isothermalFluid.H"
#include "constrainHbyA.H"
#include "constrainPressure.H"
#include "adjustPhi.H"
#include "fvcMeshPhi.H"
#include "fvcFlux.H"
#include "fvcDdt.H"
#include "fvcSnGrad.H"
#include "fvcReconstruct.H"
#include "fvcVolumeIntegrate.H"
#include "fvmDiv.H"
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::solvers::isothermalFluid::correctBuoyantPressure()
{
// Local references to the buoyancy parameters
const volScalarField& gh = buoyancy->gh;
const surfaceScalarField& ghf = buoyancy->ghf;
const uniformDimensionedScalarField pRef = buoyancy->pRef;
const volScalarField& psi = thermo.psi();
rho = thermo.rho();
rho.relax();
fvVectorMatrix& UEqn = tUEqn.ref();
// Thermodynamic density needs to be updated by psi*d(p) after the
// pressure solution
const volScalarField psip0(psi*p);
const volScalarField rAU("rAU", 1.0/UEqn.A());
const surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
tmp<volScalarField> rAtU
(
pimple.consistent()
? volScalarField::New("rAtU", 1.0/(1.0/rAU - UEqn.H1()))
: tmp<volScalarField>(nullptr)
);
tmp<surfaceScalarField> rhorAtUf
(
pimple.consistent()
? surfaceScalarField::New("rhoRAtUf", fvc::interpolate(rho*rAtU()))
: tmp<surfaceScalarField>(nullptr)
);
const volScalarField& rAAtU = pimple.consistent() ? rAtU() : rAU;
const surfaceScalarField& rhorAAtUf =
pimple.consistent() ? rhorAtUf() : rhorAUf;
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
if (pimple.nCorrPiso() <= 1)
{
tUEqn.clear();
}
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::interpolate(rho)*fvc::flux(HbyA)
+ MRF.zeroFilter(rhorAUf*fvc::ddtCorr(rho, U, phi, rhoUf))
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
const bool adjustMass =
mesh.schemes().steady() && adjustPhi(phiHbyA, U, p_rgh);
const surfaceScalarField ghGradRhof(-ghf*fvc::snGrad(rho)*mesh.magSf());
phiHbyA += rhorAUf*ghGradRhof;
tmp<fvScalarMatrix> tp_rghEqn;
if (pimple.transonic())
{
const surfaceScalarField phidByPsi
(
constrainPhid
(
fvc::relative(phiHbyA, rho, U)/fvc::interpolate(rho),
p_rgh
)
);
const surfaceScalarField phid("phid", fvc::interpolate(psi)*phidByPsi);
// Subtract the compressible part
// The resulting flux will be zero for a perfect gas
phiHbyA -= fvc::interpolate(psi*p_rgh)*phidByPsi;
if (pimple.consistent())
{
const surfaceScalarField gradpf(fvc::snGrad(p_rgh)*mesh.magSf());
phiHbyA += (rhorAAtUf - rhorAUf)*gradpf;
HbyA += (rAAtU - rAU)*fvc::reconstruct(gradpf - ghGradRhof);
}
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, rho, U, phiHbyA, rhorAAtUf, MRF);
fvc::makeRelative(phiHbyA, rho, U);
fvScalarMatrix p_rghDDtEqn
(
fvc::ddt(rho) + psi*correction(fvm::ddt(p_rgh))
+ fvc::div(phiHbyA) + fvm::div(phid, p_rgh)
==
fvModels().source(psi, p_rgh, rho.name())
);
while (pimple.correctNonOrthogonal())
{
tp_rghEqn = p_rghDDtEqn - fvm::laplacian(rhorAAtUf, p);
fvScalarMatrix& p_rghEqn = tp_rghEqn.ref();
// Relax the pressure equation to ensure diagonal-dominance
p_rghEqn.relax();
p_rghEqn.setReference
(
pressureReference.refCell(),
pressureReference.refValue()
);
p_rghEqn.solve();
}
}
else
{
if (pimple.consistent())
{
const surfaceScalarField gradpf(fvc::snGrad(p_rgh)*mesh.magSf());
phiHbyA += (rhorAAtUf - rhorAUf)*gradpf;
HbyA += (rAAtU - rAU)*fvc::reconstruct(gradpf - ghGradRhof);
}
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, rho, U, phiHbyA, rhorAAtUf, MRF);
fvc::makeRelative(phiHbyA, rho, U);
fvScalarMatrix p_rghDDtEqn
(
fvc::ddt(rho) + psi*correction(fvm::ddt(p_rgh))
+ fvc::div(phiHbyA)
==
fvModels().source(psi, p_rgh, rho.name())
);
while (pimple.correctNonOrthogonal())
{
tp_rghEqn = p_rghDDtEqn - fvm::laplacian(rhorAAtUf, p_rgh);
fvScalarMatrix& p_rghEqn = tp_rghEqn.ref();
p_rghEqn.setReference
(
pressureReference.refCell(),
pressureReference.refValue()
);
p_rghEqn.solve();
}
}
const fvScalarMatrix& p_rghEqn = tp_rghEqn();
phi = phiHbyA + p_rghEqn.flux();
// Calculate and relax the net pressure-buoyancy force
netForce.ref().relax
(
fvc::reconstruct((ghGradRhof + p_rghEqn.flux()/rhorAAtUf)),
p_rgh.relaxationFactor()
);
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U = HbyA + rAAtU*netForce();
U.correctBoundaryConditions();
fvConstraints().constrain(U);
K = 0.5*magSqr(U);
if (!mesh.schemes().steady())
{
p = p_rgh + rho*gh + pRef;
const bool constrained = fvConstraints().constrain(p);
// Thermodynamic density update
thermo.correctRho(psi*p - psip0);
if (constrained)
{
rho = thermo.rho();
}
correctDensity();
}
continuityErrors();
p = p_rgh + rho*gh + pRef;
if (mesh.schemes().steady())
{
if (fvConstraints().constrain(p))
{
p_rgh = p - rho*gh - pRef;
p_rgh.correctBoundaryConditions();
}
}
// For steady compressible closed-volume cases adjust the pressure level
// to obey overall mass continuity
if (adjustMass && !thermo.incompressible())
{
p += (initialMass - fvc::domainIntegrate(thermo.rho()))
/fvc::domainIntegrate(psi);
p_rgh = p - rho*gh - pRef;
p_rgh.correctBoundaryConditions();
}
// Optionally relax pressure for the thermophysics
p.relax();
if (mesh.schemes().steady() || pimple.simpleRho() || adjustMass)
{
rho = thermo.rho();
}
// Correct rhoUf if the mesh is moving
fvc::correctRhoUf(rhoUf, rho, U, phi, MRF);
if (mesh.schemes().steady() || pimple.simpleRho())
{
rho.relax();
}
if (thermo.dpdt())
{
dpdt = fvc::ddt(p);
}
}
// ************************************************************************* //