Files
OpenFOAM-12/src/lagrangian/basic/particle/particle.H
2018-03-05 20:14:28 +00:00

672 lines
21 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::particle
Description
Base particle class
\*---------------------------------------------------------------------------*/
#ifndef particle_H
#define particle_H
#include "vector.H"
#include "barycentric.H"
#include "barycentricTensor.H"
#include "Cloud.H"
#include "IDLList.H"
#include "pointField.H"
#include "faceList.H"
#include "OFstream.H"
#include "tetPointRef.H"
#include "FixedList.H"
#include "polyMeshTetDecomposition.H"
#include "particleMacros.H"
#include "vectorTensorTransform.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// Forward declaration of classes
class particle;
class polyPatch;
class cyclicPolyPatch;
class cyclicAMIPolyPatch;
class cyclicACMIPolyPatch;
class processorPolyPatch;
class symmetryPlanePolyPatch;
class symmetryPolyPatch;
class wallPolyPatch;
class wedgePolyPatch;
// Forward declaration of friend functions and operators
Ostream& operator<<
(
Ostream&,
const particle&
);
bool operator==(const particle&, const particle&);
bool operator!=(const particle&, const particle&);
/*---------------------------------------------------------------------------*\
Class Particle Declaration
\*---------------------------------------------------------------------------*/
class particle
:
public IDLList<particle>::link
{
// Private member data
//- Size in bytes of the position data
static const std::size_t sizeofPosition_;
//- Size in bytes of the fields
static const std::size_t sizeofFields_;
//- The factor by which the displacement is increased when passing
// through negative space. This should be slightly bigger than one.
// This is needed as a straight trajectory can form a closed loop
// through regions of overlapping positive and negative space, leading
// to a track which never ends. By increasing the rate of displacement
// through negative regions, the change in track fraction over this
// part of the loop no longer exactly cancels the change over the
// positive part, and the track therefore terminates.
static const scalar negativeSpaceDisplacementFactor;
public:
class trackingData
{
public:
// Public data
//- Flag to switch processor
bool switchProcessor;
//- Flag to indicate whether to keep particle (false = delete)
bool keepParticle;
// Constructor
template <class TrackCloudType>
trackingData(const TrackCloudType& cloud)
{}
};
private:
// Private data
//- Reference to the polyMesh database
const polyMesh& mesh_;
//- Coordinates of particle
barycentric coordinates_;
//- Index of the cell it is in
label celli_;
//- Index of the face that owns the decomposed tet that the
// particle is in
label tetFacei_;
//- Index of the point on the face that defines the decomposed
// tet that the particle is in. Relative to the face base
// point.
label tetPti_;
//- Face index if the particle is on a face otherwise -1
label facei_;
//- Fraction of time-step completed
scalar stepFraction_;
//- Originating processor id
label origProc_;
//- Local particle id on originating processor
label origId_;
private:
// Private Member Functions
// Tetrahedra functions
//- Get the vertices of the current tet
void stationaryTetGeometry
(
vector& centre,
vector& base,
vector& vertex1,
vector& vertex2
) const;
//- Get the transformation associated with the current tet. This
// will convert a barycentric position within the tet to a
// cartesian position in the global coordinate system. The
// conversion is x = A & y, where x is the cartesian position, y is
// the barycentric position and A is the transformation tensor.
barycentricTensor stationaryTetTransform() const;
//- Get the reverse transform associated with the current tet. The
// conversion is detA*y = (x - centre) & T. The variables x, y and
// centre have the same meaning as for the forward transform. T is
// the transposed inverse of the forward transform tensor, A,
// multiplied by its determinant, detA. This separation allows
// the barycentric tracking algorithm to function on inverted or
// degenerate tetrahedra.
void stationaryTetReverseTransform
(
vector& centre,
scalar& detA,
barycentricTensor& T
) const;
//- Get the vertices of the current moving tet. Two values are
// returned for each vertex. The first is a constant, and the
// second is a linear coefficient of the track fraction.
void movingTetGeometry
(
const scalar endStepFraction,
Pair<vector>& centre,
Pair<vector>& base,
Pair<vector>& vertex1,
Pair<vector>& vertex2
) const;
//- Get the transformation associated with the current, moving, tet.
// This is of the same form as for the static case. As with the
// moving geometry, a linear function of the tracking fraction is
// returned for each component.
Pair<barycentricTensor> movingTetTransform
(
const scalar endStepFraction
) const;
//- Get the reverse transformation associated with the current,
// moving, tet. This is of the same form as for the static case. As
// with the moving geometry, a function of the tracking fraction is
// returned for each component. The functions are higher order than
// for the forward transform; the determinant is cubic, and the
// tensor is quadratic.
void movingTetReverseTransform
(
const scalar endStepFraction,
Pair<vector>& centre,
FixedList<scalar, 4>& detA,
FixedList<barycentricTensor, 3>& T
) const;
// Transformations
//- Reflection transform. Corrects the coordinates when the particle
// moves between two tets which share a base vertex, but for which
// the other two non cell-centre vertices are reversed. All hits
// which retain the same face behave this way, as do face hits.
void reflect();
//- Rotation transform. Corrects the coordinates when the particle
// moves between two tets with different base vertices, but are
// otherwise similarly oriented. Hits which change the face within
// the cell make use of both this and the reflect transform.
void rotate(const bool direction);
// Topology changes
//- Change tet within a cell. Called after a triangle is hit.
void changeTet(const label tetTriI);
//- Change tet face within a cell. Called by changeTet.
void changeFace(const label tetTriI);
//- Change cell. Called when the particle hits an internal face.
void changeCell();
//- Put the particle on the lowest indexed patch for the current set
// of coincident faces. In the case of an ACMI-wall pair, this will
// move the particle from the wall face to the ACMI face, because
// ACMI patches are always listed before their associated non-
// overlapping patch.
void changeToMasterPatch();
// Geometry changes
//- Locate the particle at the given position
void locate
(
const vector& position,
const vector* direction,
const label celli,
const bool boundaryFail,
const string boundaryMsg
);
protected:
// Patch interactions
//- Overridable function to handle the particle hitting a patch.
// Executed before other patch-hitting functions.
template<class TrackCloudType>
bool hitPatch(TrackCloudType&, trackingData&);
//- Overridable function to handle the particle hitting a wedgePatch
template<class TrackCloudType>
void hitWedgePatch(TrackCloudType&, trackingData&);
//- Overridable function to handle the particle hitting a
// symmetryPlanePatch
template<class TrackCloudType>
void hitSymmetryPlanePatch(TrackCloudType&, trackingData&);
//- Overridable function to handle the particle hitting a symmetryPatch
template<class TrackCloudType>
void hitSymmetryPatch(TrackCloudType&, trackingData&);
//- Overridable function to handle the particle hitting a cyclicPatch
template<class TrackCloudType>
void hitCyclicPatch(TrackCloudType&, trackingData&);
//- Overridable function to handle the particle hitting a cyclicAMIPatch
template<class TrackCloudType>
void hitCyclicAMIPatch(TrackCloudType&, trackingData&, const vector&);
//- Overridable function to handle the particle hitting a
// cyclicACMIPatch
template<class TrackCloudType>
void hitCyclicACMIPatch(TrackCloudType&, trackingData&, const vector&);
//- Overridable function to handle the particle hitting a processorPatch
template<class TrackCloudType>
void hitProcessorPatch(TrackCloudType&, trackingData&);
//- Overridable function to handle the particle hitting a wallPatch
template<class TrackCloudType>
void hitWallPatch(TrackCloudType&, trackingData&);
public:
// Static data members
//- Runtime type information
TypeName("particle");
//- String representation of properties
DefinePropertyList
(
"(coordinatesa coordinatesb coordinatesc coordinatesd) "
"celli tetFacei tetPti facei stepFraction origProc origId"
);
//- Cumulative particle counter - used to provode unique ID
static label particleCount_;
// Constructors
//- Construct from components
particle
(
const polyMesh& mesh,
const barycentric& coordinates,
const label celli,
const label tetFacei,
const label tetPti
);
//- Construct from a position and a cell, searching for the rest of the
// required topology
particle
(
const polyMesh& mesh,
const vector& position,
const label celli
);
//- Construct from Istream
particle(const polyMesh& mesh, Istream&, bool readFields = true);
//- Construct as a copy
particle(const particle& p);
//- Construct as a copy with references to a new mesh
particle(const particle& p, const polyMesh& mesh);
//- Construct a clone
virtual autoPtr<particle> clone() const
{
return autoPtr<particle>(new particle(*this));
}
//- Factory class to read-construct particles used for
// parallel transfer
class iNew
{
const polyMesh& mesh_;
public:
iNew(const polyMesh& mesh)
:
mesh_(mesh)
{}
autoPtr<particle> operator()(Istream& is) const
{
return autoPtr<particle>(new particle(mesh_, is, true));
}
};
//- Destructor
virtual ~particle()
{}
// Member Functions
// Access
//- Get unique particle creation id
inline label getNewParticleID() const;
//- Return the mesh database
inline const polyMesh& mesh() const;
//- Return current particle coordinates
inline const barycentric& coordinates() const;
//- Return current cell particle is in
inline label cell() const;
//- Return current tet face particle is in
inline label tetFace() const;
//- Return current tet face particle is in
inline label tetPt() const;
//- Return current face particle is on otherwise -1
inline label face() const;
//- Return the fraction of time-step completed
inline scalar stepFraction() const;
//- Return the fraction of time-step completed
inline scalar& stepFraction();
//- Return the originating processor ID
inline label origProc() const;
//- Return the originating processor ID
inline label& origProc();
//- Return the particle ID on the originating processor
inline label origId() const;
//- Return the particle ID on the originating processor
inline label& origId();
// Check
//- Return the step fraction change within the overall time-step.
// Returns the start value and the change as a scalar pair. Always
// return Pair<scalar>(0, 1), unless sub-cycling is in effect, in
// which case the values will reflect the span of the sub-cycle
// within the time-step.
inline Pair<scalar> stepFractionSpan() const;
//- Return the current fraction within the timestep. This differs
// from the stored step fraction due to sub-cycling.
inline scalar currentTimeFraction() const;
//- Return the indices of the current tet that the
// particle occupies.
inline tetIndices currentTetIndices() const;
//- Return the current tet transformation tensor
inline barycentricTensor currentTetTransform() const;
//- Return the normal of the tri on tetFacei_ for the
// current tet.
inline vector normal() const;
//- Return the normal of the tri on tetFacei_ for the
// current tet at the start of the timestep, i.e. based
// on oldPoints
inline vector oldNormal() const;
//- Is the particle on a face?
inline bool onFace() const;
//- Is the particle on an internal face?
inline bool onInternalFace() const;
//- Is the particle on a boundary face?
inline bool onBoundaryFace() const;
//- Return the index of patch that the particle is on
inline label patch() const;
//- Return current particle position
inline vector position() const;
// Track
//- Track along the displacement for a given fraction of the overall
// step. End when the track is complete, or when a boundary is hit.
// On exit, stepFraction_ will have been incremented to the current
// position, and facei_ will be set to the index of the boundary
// face that was hit, or -1 if the track completed within a cell.
// The proportion of the displacement still to be completed is
// returned.
scalar track
(
const vector& displacement,
const scalar fraction
);
//- As particle::track, but also stops on internal faces.
scalar trackToFace
(
const vector& displacement,
const scalar fraction
);
//- As particle::trackToFace, but also stops on tet triangles. On
// exit, tetTriI is set to the index of the tet triangle that was
// hit, or -1 if the end position was reached.
scalar trackToTri
(
const vector& displacement,
const scalar fraction,
label& tetTriI
);
//- As particle::trackToTri, but for stationary meshes
scalar trackToStationaryTri
(
const vector& displacement,
const scalar fraction,
label& tetTriI
);
//- As particle::trackToTri, but for moving meshes
scalar trackToMovingTri
(
const vector& displacement,
const scalar fraction,
label& tetTriI
);
//- Hit the current face. If the current face is internal than this
// crosses into the next cell. If it is a boundary face then this will
// interact the particle with the relevant patch.
template<class TrackCloudType>
void hitFace
(
const vector& direction,
TrackCloudType& cloud,
trackingData& td
);
//- Convenience function. Cobines trackToFace and hitFace
template<class TrackCloudType>
void trackToAndHitFace
(
const vector& direction,
const scalar fraction,
TrackCloudType& cloud,
trackingData& td
);
//- Get the displacement from the mesh centre. Used to correct the
// particle position in cases with reduced dimensionality. Returns a
// zero vector for three-dimensional cases.
vector deviationFromMeshCentre() const;
// Patch data
//- Get the normal and velocity of the current patch location
void patchData(vector& n, vector& U) const;
// Transformations
//- Transform the physical properties of the particle
// according to the given transformation tensor
virtual void transformProperties(const tensor& T);
//- Transform the physical properties of the particle
// according to the given separation vector
virtual void transformProperties(const vector& separation);
// Parallel transfer
//- Convert global addressing to the processor patch local equivalents
void prepareForParallelTransfer();
//- Convert processor patch addressing to the global equivalents
// and set the celli to the face-neighbour
void correctAfterParallelTransfer(const label patchi, trackingData& td);
// Interaction list referral
//- Break the topology and store the particle position so that the
// particle can be referred.
void prepareForInteractionListReferral
(
const vectorTensorTransform& transform
);
//- Correct the topology after referral. The particle may still be
// outside the stored tet and therefore not track-able.
void correctAfterInteractionListReferral(const label celli);
// Decompose and reconstruct
//- Return the tet point appropriate for decomposition or reconstruction
// to or from the given mesh.
label procTetPt
(
const polyMesh& procMesh,
const label procCell,
const label procTetFace
) const;
// Mapping
//- Map after a topology change
void autoMap(const vector& position, const mapPolyMesh& mapper);
// I-O
//- Read the fields associated with the owner cloud
template<class TrackCloudType>
static void readFields(TrackCloudType& c);
//- Write the fields associated with the owner cloud
template<class TrackCloudType>
static void writeFields(const TrackCloudType& c);
//- Write the particle position and cell
void writePosition(Ostream&) const;
// Friend Operators
friend Ostream& operator<<(Ostream&, const particle&);
friend bool operator==(const particle& pA, const particle& pB);
friend bool operator!=(const particle& pA, const particle& pB);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#include "particleI.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
#include "particleTemplates.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //