Files
OpenFOAM-12/applications/modules/VoFSolver/VoFSolver.C
Henry Weller 8a1dd2eb9a solver modules: Moved constructing the face velocity/momentum into preSolve()
The velocity boundary conditions are corrected before the construction of the
face velocity or momentum but for multi-region cases with interacting velocity
boundary conditions this is only possible after all the region solver modules
have been constructed so it is better to delay the optional construction of the
face velocity/momentum until preSolve().
2023-05-30 14:59:58 +01:00

264 lines
5.7 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2022-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "VoFSolver.H"
#include "localEulerDdtScheme.H"
#include "linear.H"
#include "fvcDiv.H"
#include "fvcMeshPhi.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace solvers
{
defineTypeNameAndDebug(VoFSolver, 0);
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::solvers::VoFSolver::continuityErrors()
{
fluidSolver::continuityErrors(phi);
}
// * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * //
void Foam::solvers::VoFSolver::setrAU(const fvVectorMatrix& UEqn)
{
if (rAU.valid())
{
rAU() = 1.0/UEqn.A();
}
else
{
rAU = (1.0/UEqn.A()).ptr();
}
}
void Foam::solvers::VoFSolver::clearrAU()
{
if (!(correctPhi || mesh.topoChanging()))
{
rAU.clear();
}
}
void Foam::solvers::VoFSolver::correctCoNum()
{
fluidSolver::correctCoNum(phi);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::solvers::VoFSolver::VoFSolver
(
fvMesh& mesh,
autoPtr<VoFMixture> mixturePtr
)
:
fluidSolver(mesh),
mixturePtr_(mixturePtr),
mixture_(mixturePtr_()),
divAlphaName("div(phi,alpha)"),
U_
(
IOobject
(
"U",
runTime.name(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
),
phi_
(
IOobject
(
"phi",
runTime.name(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(U_) & mesh.Sf()
),
buoyancy(mesh),
p_rgh(buoyancy.p_rgh),
rho(mixture_.rho()),
rhoPhi
(
IOobject
(
"rhoPhi",
runTime.name(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvc::interpolate(rho)*phi_
),
MRF(mesh),
mixture(mixture_),
U(U_),
phi(phi_)
{
mesh.schemes().setFluxRequired(p_rgh.name());
if (LTS)
{
Info<< "Using LTS" << endl;
trDeltaT = tmp<volScalarField>
(
new volScalarField
(
IOobject
(
fv::localEulerDdt::rDeltaTName,
runTime.name(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless/dimTime, 1),
extrapolatedCalculatedFvPatchScalarField::typeName
)
);
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::solvers::VoFSolver::~VoFSolver()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::scalar Foam::solvers::VoFSolver::maxDeltaT() const
{
const scalar maxAlphaCo =
runTime.controlDict().lookup<scalar>("maxAlphaCo");
scalar deltaT = fluidSolver::maxDeltaT();
if (alphaCoNum > small)
{
deltaT = min(deltaT, maxAlphaCo/alphaCoNum*runTime.deltaTValue());
}
return deltaT;
}
void Foam::solvers::VoFSolver::preSolve()
{
// Read the controls
readControls();
if ((mesh.dynamic() || MRF.size()) && !Uf.valid())
{
Info<< "Constructing face momentum Uf" << endl;
// Ensure the U BCs are up-to-date before constructing Uf
U_.correctBoundaryConditions();
Uf = new surfaceVectorField
(
IOobject
(
"Uf",
runTime.name(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
fvc::interpolate(U_)
);
}
if (transient())
{
correctCoNum();
}
else if (LTS)
{
setRDeltaT();
}
fvModels().preUpdateMesh();
// Store divU from the previous mesh so that it can be mapped
// and used in correctPhi to ensure the corrected phi has the
// same divergence
if (correctPhi && divergent())
{
// Construct and register divU for mapping
divU = new volScalarField
(
"divU0",
fvc::div(fvc::absolute(phi, U))
);
}
// Update the mesh for topology change, mesh to mesh mapping
mesh_.update();
}
void Foam::solvers::VoFSolver::prePredictor()
{}
void Foam::solvers::VoFSolver::postSolve()
{
divU.clear();
}
// ************************************************************************* //