Files
OpenFOAM-12/applications/modules/multiphaseEuler/functionObjects/phaseForces/phaseForces.C
Henry Weller 18200e72a6 multiphaseEuler: Update the virtual-mass force implementation
The central coefficient part of the virtual-mass phase acceleration matrix is
now included in the phase velocity transport central coefficient + drag matrix
so that the all the phase contributions to each phase momentum equation are
handled implicitly and consistently without lagging contribution from the other
phases in either the pressure equation or phase momentum correctors.

This improves the conditioning of the pressure equation and convergence rate of
bubbly-flow cases.
2023-09-01 13:07:00 +01:00

307 lines
8.6 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2018-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "phaseForces.H"
#include "addToRunTimeSelectionTable.H"
#include "fvcGrad.H"
#include "dragModel.H"
#include "virtualMassModel.H"
#include "liftModel.H"
#include "wallLubricationModel.H"
#include "turbulentDispersionModel.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace functionObjects
{
defineTypeNameAndDebug(phaseForces, 0);
addToRunTimeSelectionTable(functionObject, phaseForces, dictionary);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::phaseForces::phaseForces
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
fvMeshFunctionObject(name, runTime, dict),
phase_
(
mesh_.lookupObject<phaseModel>
(
IOobject::groupName("alpha", dict.lookup("phase"))
)
),
fluid_(mesh_.lookupObject<phaseSystem>(phaseSystem::propertiesName))
{
read(dict);
forAll(fluid_.phases(), phasei)
{
const phaseModel& otherPhase = fluid_.phases()[phasei];
if (&otherPhase == &phase_) continue;
const phaseInterface interface(phase_, otherPhase);
if (fluid_.foundInterfacialModel<blendedDragModel>(interface))
{
forceFields_.insert
(
dragModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName("dragForce", phase_.name()),
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume, Zero)
)
);
}
if (fluid_.foundInterfacialModel<blendedVirtualMassModel>(interface))
{
forceFields_.insert
(
virtualMassModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName
(
"virtualMassForce",
phase_.name()
),
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume, Zero)
)
);
}
if (fluid_.foundInterfacialModel<blendedLiftModel>(interface))
{
forceFields_.insert
(
liftModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName("liftForce", phase_.name()),
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume, Zero)
)
);
}
if
(
fluid_.foundInterfacialModel
<blendedWallLubricationModel>(interface)
)
{
forceFields_.insert
(
wallLubricationModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName
(
"wallLubricationForce",
phase_.name()
),
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume, Zero)
)
);
}
if
(
fluid_.foundInterfacialModel
<blendedTurbulentDispersionModel>(interface)
)
{
forceFields_.insert
(
turbulentDispersionModel::typeName,
new volVectorField
(
IOobject
(
IOobject::groupName
(
"turbulentDispersionForce",
phase_.name()
),
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedVector(dimForce/dimVolume, Zero)
)
);
}
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::functionObjects::phaseForces::~phaseForces()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::phaseForces::read(const dictionary& dict)
{
fvMeshFunctionObject::read(dict);
return true;
}
bool Foam::functionObjects::phaseForces::execute()
{
// Zero the force fields
forAllConstIter
(
HashPtrTable<volVectorField>,
forceFields_,
forceFieldIter
)
{
*forceFieldIter() = Zero;
}
// Add the forces from all the interfaces which contain this phase
forAll(fluid_.phases(), phasei)
{
const phaseModel& otherPhase = fluid_.phases()[phasei];
if (&otherPhase == &phase_) continue;
const phaseInterface interface(phase_, otherPhase);
if (fluid_.foundInterfacialModel<blendedDragModel>(interface))
{
*forceFields_[dragModel::typeName] +=
fluid_.lookupInterfacialModel<blendedDragModel>(interface).K()
*(otherPhase.U() - phase_.U());
}
if (fluid_.foundInterfacialModel<blendedVirtualMassModel>(interface))
{
*forceFields_[virtualMassModel::typeName] +=
fluid_.lookupInterfacialModel
<blendedVirtualMassModel>(interface).K()
*(
(otherPhase.DUDt() & otherPhase.U())
- (phase_.DUDt() & phase_.U())
);
}
if (fluid_.foundInterfacialModel<blendedLiftModel>(interface))
{
*forceFields_[liftModel::typeName] +=
(&interface.phase1() == &phase_ ? -1 : +1)
*fluid_.lookupInterfacialModel<blendedLiftModel>(interface).F();
}
if
(
fluid_.foundInterfacialModel
<blendedWallLubricationModel>(interface)
)
{
*forceFields_[wallLubricationModel::typeName] +=
(&interface.phase1() == &phase_ ? -1 : +1)
*fluid_.lookupInterfacialModel
<blendedWallLubricationModel>(interface).F();
}
if
(
fluid_.foundInterfacialModel
<blendedTurbulentDispersionModel>(interface)
)
{
*forceFields_[turbulentDispersionModel::typeName] +=
fluid_.lookupInterfacialModel
<blendedTurbulentDispersionModel>(interface).D()
*fvc::grad
(
otherPhase
/max(phase_ + otherPhase, otherPhase.residualAlpha())
);
}
}
return true;
}
bool Foam::functionObjects::phaseForces::write()
{
forAllConstIter
(
HashPtrTable<volVectorField>,
forceFields_,
forceFieldIter
)
{
writeObject(forceFieldIter()->name());
}
return true;
}
// ************************************************************************* //