Files
OpenFOAM-12/src/fvModels/derived/rotorDisk/rotorDisk.C
Henry Weller 20f5235ecf Renamed ID() -> Index()
Index is a better name to describe a label index than ID which may be an
integer, word or other means of identification.
2023-12-20 18:39:55 +00:00

682 lines
18 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "rotorDisk.H"
#include "fvMatrices.H"
#include "geometricOneField.H"
#include "syncTools.H"
#include "axesRotation.H"
#include "addToRunTimeSelectionTable.H"
using namespace Foam::constant;
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
namespace Foam
{
namespace fv
{
defineTypeNameAndDebug(rotorDisk, 0);
addToRunTimeSelectionTable(fvModel, rotorDisk, dictionary);
addBackwardCompatibleToRunTimeSelectionTable
(
fvModel,
rotorDisk,
dictionary,
rotorDiskSource,
"rotorDiskSource"
);
}
}
namespace Foam
{
template<>
const char* NamedEnum<fv::rotorDisk::geometryModeType, 2>::names[] =
{"auto", "specified"};
template<>
const char* NamedEnum<fv::rotorDisk::inletFlowType, 3>::names[] =
{"fixed", "surfaceNormal", "local"};
}
const Foam::NamedEnum<Foam::fv::rotorDisk::geometryModeType, 2>
Foam::fv::rotorDisk::geometryModeTypeNames_;
const Foam::NamedEnum<Foam::fv::rotorDisk::inletFlowType, 3>
Foam::fv::rotorDisk::inletFlowTypeNames_;
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
void Foam::fv::rotorDisk::readCoeffs()
{
UName_ = coeffs().lookupOrDefault<word>("U", "U");
// Read co-ordinate system/geometry invariant properties
scalar rpm(coeffs().lookup<scalar>("rpm"));
omega_ = rpm/60.0*mathematical::twoPi;
coeffs().lookup("nBlades") >> nBlades_;
inletFlow_ = inletFlowTypeNames_.read(coeffs().lookup("inletFlowType"));
coeffs().lookup("tipEffect") >> tipEffect_;
const dictionary& flapCoeffs(coeffs().subDict("flapCoeffs"));
flapCoeffs.lookup("beta0") >> flap_.beta0;
flapCoeffs.lookup("beta1c") >> flap_.beta1c;
flapCoeffs.lookup("beta2s") >> flap_.beta2s;
flap_.beta0 = degToRad(flap_.beta0);
flap_.beta1c = degToRad(flap_.beta1c);
flap_.beta2s = degToRad(flap_.beta2s);
// Create co-ordinate system
createCoordinateSystem();
// Read co-odinate system dependent properties
checkData();
constructGeometry();
trim_->read(coeffs());
if (debug)
{
writeField("thetag", trim_->thetag()());
writeField("faceArea", area_);
}
}
void Foam::fv::rotorDisk::checkData()
{
// Set inflow type
switch (set_.selectionType())
{
case fvCellSet::selectionTypes::cellSet:
case fvCellSet::selectionTypes::cellZone:
case fvCellSet::selectionTypes::all:
{
// Set the profile ID for each blade section
profiles_.connectBlades
(
blade_.profileName(),
blade_.profileIndex()
);
switch (inletFlow_)
{
case inletFlowType::fixed:
{
coeffs().lookup("inletVelocity") >> inletVelocity_;
break;
}
case inletFlowType::surfaceNormal:
{
scalar UIn
(
coeffs().lookup<scalar>("inletNormalVelocity")
);
inletVelocity_ = -coordSys_.R().e3()*UIn;
break;
}
case inletFlowType::local:
{
break;
}
default:
{
FatalErrorInFunction
<< "Unknown inlet velocity type" << abort(FatalError);
}
}
break;
}
default:
{
FatalErrorInFunction
<< "Source cannot be used with '"
<< fvCellSet::selectionTypeNames[set_.selectionType()]
<< "' mode. Please use one of: " << nl
<< fvCellSet::selectionTypeNames
[fvCellSet::selectionTypes::cellSet] << nl
<< fvCellSet::selectionTypeNames
[fvCellSet::selectionTypes::cellZone] << nl
<< fvCellSet::selectionTypeNames
[fvCellSet::selectionTypes::all]
<< exit(FatalError);
}
}
}
void Foam::fv::rotorDisk::setFaceArea(vector& axis, const bool correct)
{
area_ = 0.0;
static const scalar tol = 0.8;
const label nInternalFaces = mesh().nInternalFaces();
const polyBoundaryMesh& pbm = mesh().boundaryMesh();
const vectorField& Sf = mesh().Sf();
const scalarField& magSf = mesh().magSf();
vector n = Zero;
// Calculate cell addressing for selected cells
labelList cellAddr(mesh().nCells(), -1);
UIndirectList<label>(cellAddr, set_.cells()) =
identityMap(set_.nCells());
labelList nbrFaceCellAddr(mesh().nFaces() - nInternalFaces, -1);
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
if (pp.coupled())
{
forAll(pp, i)
{
label facei = pp.start() + i;
label nbrFacei = facei - nInternalFaces;
label own = mesh().faceOwner()[facei];
nbrFaceCellAddr[nbrFacei] = cellAddr[own];
}
}
}
// Correct for parallel running
syncTools::swapBoundaryFaceList(mesh(), nbrFaceCellAddr);
// Add internal field contributions
for (label facei = 0; facei < nInternalFaces; facei++)
{
const label own = cellAddr[mesh().faceOwner()[facei]];
const label nbr = cellAddr[mesh().faceNeighbour()[facei]];
if ((own != -1) && (nbr == -1))
{
vector nf = Sf[facei]/magSf[facei];
if ((nf & axis) > tol)
{
area_[own] += magSf[facei];
n += Sf[facei];
}
}
else if ((own == -1) && (nbr != -1))
{
vector nf = Sf[facei]/magSf[facei];
if ((-nf & axis) > tol)
{
area_[nbr] += magSf[facei];
n -= Sf[facei];
}
}
}
// Add boundary contributions
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
const vectorField& Sfp = mesh().Sf().boundaryField()[patchi];
const scalarField& magSfp = mesh().magSf().boundaryField()[patchi];
if (pp.coupled())
{
forAll(pp, j)
{
const label facei = pp.start() + j;
const label own = cellAddr[mesh().faceOwner()[facei]];
const label nbr = nbrFaceCellAddr[facei - nInternalFaces];
const vector nf = Sfp[j]/magSfp[j];
if ((own != -1) && (nbr == -1) && ((nf & axis) > tol))
{
area_[own] += magSfp[j];
n += Sfp[j];
}
}
}
else
{
forAll(pp, j)
{
const label facei = pp.start() + j;
const label own = cellAddr[mesh().faceOwner()[facei]];
const vector nf = Sfp[j]/magSfp[j];
if ((own != -1) && ((nf & axis) > tol))
{
area_[own] += magSfp[j];
n += Sfp[j];
}
}
}
}
if (correct)
{
reduce(n, sumOp<vector>());
axis = n/mag(n);
}
if (debug)
{
volScalarField area
(
IOobject
(
name() + ":area",
mesh().time().name(),
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh(),
dimensionedScalar(dimArea, 0)
);
UIndirectList<scalar>(area.primitiveField(), set_.cells()) = area_;
Info<< type() << ": " << name() << " writing field " << area.name()
<< endl;
area.write();
}
}
void Foam::fv::rotorDisk::createCoordinateSystem()
{
// Construct the local rotor co-prdinate system
vector origin(Zero);
vector axis(Zero);
vector refDir(Zero);
geometryModeType gm =
geometryModeTypeNames_.read(coeffs().lookup("geometryMode"));
switch (gm)
{
case geometryModeType::automatic:
{
// Determine rotation origin (cell volume weighted)
scalar sumV = 0.0;
const scalarField& V = mesh().V();
const vectorField& C = mesh().C();
const labelUList cells = set_.cells();
forAll(cells, i)
{
const label celli = cells[i];
sumV += V[celli];
origin += V[celli]*C[celli];
}
reduce(origin, sumOp<vector>());
reduce(sumV, sumOp<scalar>());
origin /= sumV;
// Determine first radial vector
vector dx1(Zero);
scalar magR = -great;
forAll(cells, i)
{
const label celli = cells[i];
vector test = C[celli] - origin;
if (mag(test) > magR)
{
dx1 = test;
magR = mag(test);
}
}
reduce(dx1, maxMagSqrOp<vector>());
magR = mag(dx1);
// Determine second radial vector and cross to determine axis
forAll(cells, i)
{
const label celli = cells[i];
vector dx2 = C[celli] - origin;
if (mag(dx2) > 0.5*magR)
{
axis = dx1 ^ dx2;
if (mag(axis) > small)
{
break;
}
}
}
reduce(axis, maxMagSqrOp<vector>());
axis /= mag(axis);
// Correct the axis direction using a point above the rotor
{
vector pointAbove(coeffs().lookup("pointAbove"));
vector dir = pointAbove - origin;
dir /= mag(dir);
if ((dir & axis) < 0)
{
axis *= -1.0;
}
}
coeffs().lookup("refDirection") >> refDir;
cylindrical_.reset
(
new cylindrical(axis, origin, UIndirectList<vector>(C, cells)())
);
// Set the face areas and apply correction to calculated axis
// e.g. if cellZone is more than a single layer in thickness
setFaceArea(axis, true);
break;
}
case geometryModeType::specified:
{
coeffs().lookup("origin") >> origin;
coeffs().lookup("axis") >> axis;
coeffs().lookup("refDirection") >> refDir;
cylindrical_.reset
(
new cylindrical
(
axis,
origin,
UIndirectList<vector>(mesh().C(), set_.cells())()
)
);
setFaceArea(axis, false);
break;
}
}
coordSys_ = coordinateSystems::cylindrical
(
"rotorCoordSys",
origin,
axis,
refDir,
false
);
const scalar sumArea = gSum(area_);
const scalar diameter = Foam::sqrt(4.0*sumArea/mathematical::pi);
Info<< " Rotor geometry:" << nl
<< " - disk diameter = " << diameter << nl
<< " - disk area = " << sumArea << nl
<< " - origin = " << coordSys_.origin() << nl
<< " - r-axis = " << coordSys_.R().e1() << nl
<< " - psi-axis = " << coordSys_.R().e2() << nl
<< " - z-axis = " << coordSys_.R().e3() << endl;
}
void Foam::fv::rotorDisk::constructGeometry()
{
const vectorField& C = mesh().C();
const labelUList cells = set_.cells();
forAll(cells, i)
{
if (area_[i] > rootVSmall)
{
const label celli = cells[i];
// Position in (planar) rotor co-ordinate system
x_[i] = coordSys_.localPosition(C[celli]);
// Cache max radius
rMax_ = max(rMax_, x_[i].x());
// Swept angle relative to rDir axis [radians] in range 0 -> 2*pi
scalar psi = x_[i].y();
// Blade flap angle [radians]
scalar beta =
flap_.beta0 - flap_.beta1c*cos(psi) - flap_.beta2s*sin(psi);
// Determine rotation tensor to convert from planar system into the
// rotor cone system
scalar c = cos(beta);
scalar s = sin(beta);
R_[i] = tensor(c, 0, -s, 0, 1, 0, s, 0, c);
invR_[i] = R_[i].T();
}
}
}
Foam::tmp<Foam::vectorField> Foam::fv::rotorDisk::inflowVelocity
(
const volVectorField& U
) const
{
switch (inletFlow_)
{
case inletFlowType::fixed:
case inletFlowType::surfaceNormal:
{
return tmp<vectorField>
(
new vectorField(mesh().nCells(), inletVelocity_)
);
break;
}
case inletFlowType::local:
{
return U.primitiveField();
break;
}
default:
{
FatalErrorInFunction
<< "Unknown inlet flow specification" << abort(FatalError);
}
}
return tmp<vectorField>(new vectorField(mesh().nCells(), Zero));
}
// * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * * //
Foam::fv::rotorDisk::rotorDisk
(
const word& name,
const word& modelType,
const fvMesh& mesh,
const dictionary& dict
)
:
fvModel(name, modelType, mesh, dict),
set_(mesh, coeffs()),
UName_(word::null),
omega_(0),
nBlades_(0),
inletFlow_(inletFlowType::local),
inletVelocity_(Zero),
tipEffect_(1),
flap_(),
x_(set_.nCells(), Zero),
R_(set_.nCells(), I),
invR_(set_.nCells(), I),
area_(set_.nCells(), Zero),
coordSys_("rotorCoordSys", vector::zero, axesRotation(sphericalTensor::I)),
cylindrical_(),
rMax_(0),
trim_(trimModel::New(*this, coeffs())),
blade_(coeffs().subDict("blade")),
profiles_(coeffs().subDict("profiles")),
rhoRef_(1)
{
readCoeffs();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::fv::rotorDisk::~rotorDisk()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::wordList Foam::fv::rotorDisk::addSupFields() const
{
return wordList(1, UName_);
}
void Foam::fv::rotorDisk::addSup
(
const volVectorField& U,
fvMatrix<vector>& eqn
) const
{
volVectorField::Internal force
(
IOobject
(
name() + ":rotorForce",
mesh().time().name(),
mesh()
),
mesh(),
dimensionedVector
(
"zero",
eqn.dimensions()/dimVolume,
Zero
)
);
// Read the reference density for incompressible flow
coeffs().lookup("rhoRef") >> rhoRef_;
const vectorField Uin(inflowVelocity(U));
trim_->correct(Uin, force);
calculate(geometricOneField(), Uin, trim_->thetag(), force);
// Add source to rhs of eqn
eqn -= force;
if (mesh().time().writeTime())
{
force.write();
}
}
void Foam::fv::rotorDisk::addSup
(
const volScalarField& rho,
const volVectorField& U,
fvMatrix<vector>& eqn
) const
{
volVectorField::Internal force
(
IOobject
(
name() + ":rotorForce",
mesh().time().name(),
mesh()
),
mesh(),
dimensionedVector
(
"zero",
eqn.dimensions()/dimVolume,
Zero
)
);
const vectorField Uin(inflowVelocity(U));
trim_->correct(rho, Uin, force);
calculate(rho, Uin, trim_->thetag(), force);
// Add source to rhs of eqn
eqn -= force;
if (mesh().time().writeTime())
{
force.write();
}
}
bool Foam::fv::rotorDisk::movePoints()
{
set_.movePoints();
return true;
}
void Foam::fv::rotorDisk::topoChange(const polyTopoChangeMap& map)
{
set_.topoChange(map);
}
void Foam::fv::rotorDisk::mapMesh(const polyMeshMap& map)
{
set_.mapMesh(map);
}
void Foam::fv::rotorDisk::distribute(const polyDistributionMap& map)
{
set_.distribute(map);
}
bool Foam::fv::rotorDisk::read(const dictionary& dict)
{
if (fvModel::read(dict))
{
set_.read(coeffs());
readCoeffs();
return true;
}
else
{
return false;
}
}
// ************************************************************************* //