Files
OpenFOAM-12/applications/utilities/preProcessing/applyBoundaryLayer/applyBoundaryLayer.C
Henry Weller de66b1be68 MomentumTransportModels: Update of the TurbulenceModels library for all flow types
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.

The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately.  The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.

For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.

During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance.  All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.

Henry G. Weller
CFD Direct Ltd.
2020-04-14 20:44:22 +01:00

239 lines
7.1 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2020 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
applyBoundaryLayer
Description
Apply a simplified boundary-layer model to the velocity and
turbulence fields based on the 1/7th power-law.
The uniform boundary-layer thickness is either provided via the -ybl option
or calculated as the average of the distance to the wall scaled with
the thickness coefficient supplied via the option -Cbl. If both options
are provided -ybl is used.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "kinematicMomentumTransportModel.H"
#include "wallDist.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Turbulence constants - file-scope
static const scalar Cmu(0.09);
static const scalar kappa(0.41);
int main(int argc, char *argv[])
{
argList::addNote
(
"apply a simplified boundary-layer model to the velocity and\n"
"turbulence fields based on the 1/7th power-law."
);
argList::addOption
(
"ybl",
"scalar",
"specify the boundary-layer thickness"
);
argList::addOption
(
"Cbl",
"scalar",
"boundary-layer thickness as Cbl * mean distance to wall"
);
argList::addBoolOption
(
"writenut",
"write nut field"
);
#include "setRootCase.H"
if (!args.optionFound("ybl") && !args.optionFound("Cbl"))
{
FatalErrorInFunction
<< "Neither option 'ybl' or 'Cbl' have been provided to calculate "
<< "the boundary-layer thickness.\n"
<< "Please choose either 'ybl' OR 'Cbl'."
<< exit(FatalError);
}
else if (args.optionFound("ybl") && args.optionFound("Cbl"))
{
FatalErrorInFunction
<< "Both 'ybl' and 'Cbl' have been provided to calculate "
<< "the boundary-layer thickness.\n"
<< "Please choose either 'ybl' OR 'Cbl'."
<< exit(FatalError);
}
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Modify velocity by applying a 1/7th power law boundary-layer
// u/U0 = (y/ybl)^(1/7)
// assumes U0 is the same as the current cell velocity
Info<< "Setting boundary layer velocity" << nl << endl;
scalar yblv = ybl.value();
forAll(U, celli)
{
if (y[celli] <= yblv)
{
mask[celli] = 1;
U[celli] *= ::pow(y[celli]/yblv, (1.0/7.0));
}
}
mask.correctBoundaryConditions();
Info<< "Writing U\n" << endl;
U.write();
// Update/re-write phi
#include "createPhi.H"
phi.write();
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::momentumTransportModel> turbulence
(
incompressible::momentumTransportModel::New(U, phi, laminarTransport)
);
if (isA<incompressible::RASModel>(turbulence()))
{
// Calculate nut
turbulence->validate();
tmp<volScalarField> tnut = turbulence->nut();
volScalarField& nut = const_cast<volScalarField&>(tnut());
volScalarField S(mag(dev(symm(fvc::grad(U)))));
nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S;
// Do not correct BC - wall functions will 'undo' manipulation above
// by using nut from turbulence model
if (args.optionFound("writenut"))
{
Info<< "Writing nut" << endl;
nut.write();
}
//--- Read and modify turbulence fields
// Turbulence k
tmp<volScalarField> tk = turbulence->k();
volScalarField& k = const_cast<volScalarField&>(tk());
scalar ck0 = pow025(Cmu)*kappa;
k = (1 - mask)*k + mask*sqr(nut/(ck0*min(y, ybl)));
// Do not correct BC - operation may use inconsistent fields wrt these
// local manipulations
// k.correctBoundaryConditions();
Info<< "Writing k\n" << endl;
k.write();
// Turbulence epsilon
tmp<volScalarField> tepsilon = turbulence->epsilon();
volScalarField& epsilon = const_cast<volScalarField&>(tepsilon());
scalar ce0 = ::pow(Cmu, 0.75)/kappa;
epsilon = (1 - mask)*epsilon + mask*ce0*k*sqrt(k)/min(y, ybl);
// Do not correct BC - wall functions will use non-updated k from
// turbulence model
// epsilon.correctBoundaryConditions();
Info<< "Writing epsilon\n" << endl;
epsilon.write();
// Turbulence omega
IOobject omegaHeader
(
"omega",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (omegaHeader.typeHeaderOk<volScalarField>(true))
{
volScalarField omega(omegaHeader, mesh);
dimensionedScalar k0("vSmall", k.dimensions(), vSmall);
omega = (1 - mask)*omega + mask*epsilon/(Cmu*k + k0);
// Do not correct BC - wall functions will use non-updated k from
// turbulence model
// omega.correctBoundaryConditions();
Info<< "Writing omega\n" << endl;
omega.write();
}
// Turbulence nuTilda
IOobject nuTildaHeader
(
"nuTilda",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
if (nuTildaHeader.typeHeaderOk<volScalarField>(true))
{
volScalarField nuTilda(nuTildaHeader, mesh);
nuTilda = nut;
// Do not correct BC
// nuTilda.correctBoundaryConditions();
Info<< "Writing nuTilda\n" << endl;
nuTilda.write();
}
}
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //