Files
OpenFOAM-12/applications/utilities/parallelProcessing/decomposePar/fvFieldDecomposerTemplates.C

558 lines
16 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2024 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "fvFieldDecomposer.H"
#include "processorFvPatchField.H"
#include "processorFvsPatchField.H"
#include "processorCyclicFvPatchField.H"
#include "processorCyclicFvsPatchField.H"
#include "emptyFvPatchFields.H"
#include "stringOps.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class Type>
Foam::tmp<Foam::Field<Type>> Foam::fvFieldDecomposer::mapCellToFace
(
const labelUList& owner,
const labelUList& neighbour,
const Field<Type>& field,
const labelUList& addressing
)
{
tmp<Field<Type>> tfld(new Field<Type>(addressing.size()));
Field<Type>& fld = tfld.ref();
forAll(addressing, i)
{
fld[i] =
field
[
addressing[i] > 0
? neighbour[addressing[i] - 1]
: owner[- addressing[i] - 1]
];
}
return tfld;
}
template<class Type>
Foam::tmp<Foam::Field<Type>> Foam::fvFieldDecomposer::mapFaceToFace
(
const Field<Type>& field,
const labelUList& addressing,
const bool isFlux
)
{
tmp<Field<Type>> tfld(new Field<Type>(addressing.size()));
Field<Type>& fld = tfld.ref();
forAll(addressing, i)
{
fld[i] =
(isFlux && addressing[i] < 0 ? -1 : +1)
*field[mag(addressing[i]) - 1];
}
return tfld;
}
template<class Type>
Foam::PtrList<typename Foam::VolField<Type>::Internal>
Foam::fvFieldDecomposer::decomposeVolInternalField
(
const IOobject& fieldIoObject
) const
{
// Read the field
const typename VolField<Type>::Internal field
(
IOobject
(
fieldIoObject.name(),
completeMesh_.time().name(),
completeMesh_,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
completeMesh_
);
// Construct the processor fields
PtrList<typename VolField<Type>::Internal> procFields(procMeshes_.size());
forAll(procMeshes_, proci)
{
// Create the processor field with the dummy patch fields
procFields.set
(
proci,
new typename VolField<Type>::Internal
(
IOobject
(
fieldIoObject.name(),
procMeshes_[proci].time().name(),
procMeshes_[proci],
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
procMeshes_[proci],
field.dimensions(),
Field<Type>(field.primitiveField(), cellProcAddressing_[proci])
)
);
}
return procFields;
}
template<class Type>
Foam::PtrList<Foam::VolField<Type>>
Foam::fvFieldDecomposer::decomposeVolField
(
const IOobject& fieldIoObject
) const
{
// Read the field
const VolField<Type> field
(
IOobject
(
fieldIoObject.name(),
completeMesh_.time().name(),
completeMesh_,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
completeMesh_
);
// Construct the processor fields
PtrList<VolField<Type>> procFields(procMeshes_.size());
forAll(procMeshes_, proci)
{
// Create dummy patch fields
PtrList<fvPatchField<Type>> patchFields
(
procMeshes_[proci].boundary().size()
);
forAll(procMeshes_[proci].boundary(), procPatchi)
{
patchFields.set
(
procPatchi,
fvPatchField<Type>::New
(
calculatedFvPatchField<Type>::typeName,
procMeshes_[proci].boundary()[procPatchi],
DimensionedField<Type, volMesh>::null()
)
);
}
// Create the processor field with the dummy patch fields
procFields.set
(
proci,
new VolField<Type>
(
IOobject
(
fieldIoObject.name(),
procMeshes_[proci].time().name(),
procMeshes_[proci],
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
procMeshes_[proci],
field.dimensions(),
Field<Type>(field.primitiveField(), cellProcAddressing_[proci]),
patchFields,
field.sources().table()
)
);
// Alias the created proc field
VolField<Type>& vf = procFields[proci];
// Change the patch fields to the correct type using a mapper
// constructor (with reference to the now correct internal field)
typename VolField<Type>::Boundary& bf = vf.boundaryFieldRef();
forAll(bf, procPatchi)
{
const fvPatch& procPatch =
procMeshes_[proci].boundary()[procPatchi];
const label completePatchi = completePatchID(proci, procPatchi);
if (completePatchi == procPatchi)
{
bf.set
(
procPatchi,
fvPatchField<Type>::New
(
field.boundaryField()[completePatchi],
procPatch,
vf(),
patchFieldDecomposers_[proci][procPatchi]
)
);
}
else if (isA<processorCyclicFvPatch>(procPatch))
{
if (field.boundaryField()[completePatchi].overridesConstraint())
{
OStringStream str;
str << "\nThe field \"" << field.name()
<< "\" on cyclic patch \""
<< field.boundaryField()[completePatchi].patch().name()
<< "\" cannot be decomposed as it is not a cyclic "
<< "patch field. A \"patchType cyclic;\" setting has "
<< "been used to override the cyclic patch type.\n\n"
<< "Cyclic patches like this with non-cyclic boundary "
<< "conditions should be confined to a single "
<< "processor using decomposition constraints.";
FatalErrorInFunction
<< stringOps::breakIntoIndentedLines(str.str()).c_str()
<< exit(FatalError);
}
const label nbrCompletePatchi =
refCast<const processorCyclicFvPatch>(procPatch)
.referPatch().nbrPatchIndex();
// Use `fvPatchField<Type>::New` rather than
// `new processorCyclicFvPatchField<Type>` so that derivations
// (such as non-conformal processor cyclics) are constructed
bf.set
(
procPatchi,
fvPatchField<Type>::New
(
procPatch.type(),
procPatch,
vf()
)
);
bf[procPatchi] =
mapCellToFace
(
labelUList(),
completeMesh_.lduAddr().patchAddr(nbrCompletePatchi),
field.primitiveField(),
faceProcAddressingBf_[proci][procPatchi]
);
}
else if (isA<processorFvPatch>(procPatch))
{
bf.set
(
procPatchi,
fvPatchField<Type>::New
(
procPatch.type(),
procPatch,
vf()
)
);
bf[procPatchi] =
mapCellToFace
(
completeMesh_.owner(),
completeMesh_.neighbour(),
field.primitiveField(),
faceProcAddressingBf_[proci][procPatchi]
);
}
else
{
FatalErrorInFunction
<< "Unknown type." << abort(FatalError);
}
}
}
return procFields;
}
template<class Type>
Foam::PtrList<Foam::SurfaceField<Type>>
Foam::fvFieldDecomposer::decomposeFvSurfaceField
(
const IOobject& fieldIoObject
) const
{
// Read the field
const SurfaceField<Type> field
(
IOobject
(
fieldIoObject.name(),
completeMesh_.time().name(),
completeMesh_,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
completeMesh_
);
// Construct the processor fields
PtrList<SurfaceField<Type>> procFields(procMeshes_.size());
forAll(procMeshes_, proci)
{
const SubList<label> faceAddressingIf
(
faceProcAddressing_[proci],
procMeshes_[proci].nInternalFaces()
);
// Create dummy patch fields
PtrList<fvsPatchField<Type>> patchFields
(
procMeshes_[proci].boundary().size()
);
forAll(procMeshes_[proci].boundary(), procPatchi)
{
patchFields.set
(
procPatchi,
fvsPatchField<Type>::New
(
calculatedFvsPatchField<Type>::typeName,
procMeshes_[proci].boundary()[procPatchi],
DimensionedField<Type, surfaceMesh>::null()
)
);
}
// Create the processor field with the dummy patch fields
procFields.set
(
proci,
new SurfaceField<Type>
(
IOobject
(
field.name(),
procMeshes_[proci].time().name(),
procMeshes_[proci],
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
procMeshes_[proci],
field.dimensions(),
mapFaceToFace
(
field,
faceAddressingIf,
isFlux(field)
),
patchFields
)
);
// Alias the created proc field
SurfaceField<Type>& sf = procFields[proci];
// Change the patch fields to the correct type using a mapper
// constructor (with reference to the now correct internal field)
typename SurfaceField<Type>::Boundary& bf = sf.boundaryFieldRef();
forAll(procMeshes_[proci].boundary(), procPatchi)
{
const fvPatch& procPatch =
procMeshes_[proci].boundary()[procPatchi];
const label completePatchi = completePatchID(proci, procPatchi);
if (completePatchi == procPatchi)
{
bf.set
(
procPatchi,
fvsPatchField<Type>::New
(
field.boundaryField()[procPatchi],
procPatch,
sf(),
patchFieldDecomposers_[proci][procPatchi]
)
);
}
else if (isA<processorCyclicFvPatch>(procPatch))
{
bf.set
(
procPatchi,
new processorCyclicFvsPatchField<Type>
(
procPatch,
sf(),
mapFaceToFace
(
field.boundaryField()[completePatchi],
faceProcAddressingBf_[proci][procPatchi],
isFlux(field)
)
)
);
}
else if (isA<processorFvPatch>(procPatch))
{
bf.set
(
procPatchi,
new processorFvsPatchField<Type>
(
procPatch,
sf(),
mapFaceToFace
(
field.primitiveField(),
faceProcAddressingBf_[proci][procPatchi],
isFlux(field)
)
)
);
}
else
{
FatalErrorInFunction
<< "Unknown type." << abort(FatalError);
}
}
}
return procFields;
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
void Foam::fvFieldDecomposer::decomposeVolInternalFields
(
const IOobjectList& objects
)
{
const word& fieldClassName = VolField<Type>::Internal::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< nl << " Decomposing " << fieldClassName << "s" << nl << endl;
forAllConstIter(IOobjectList, fields, fieldIter)
{
Info<< " " << fieldIter()->name() << endl;
PtrList<typename VolField<Type>::Internal> procFields =
decomposeVolInternalField<Type>(*fieldIter());
forAll(procFields, proci)
{
procFields[proci].write();
}
}
}
}
template<class Type>
void Foam::fvFieldDecomposer::decomposeVolFields
(
const IOobjectList& objects
)
{
const word& fieldClassName = VolField<Type>::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< nl << " Decomposing " << fieldClassName << "s" << nl << endl;
forAllConstIter(IOobjectList, fields, fieldIter)
{
Info<< " " << fieldIter()->name() << endl;
PtrList<VolField<Type>> procFields =
decomposeVolField<Type>(*fieldIter());
forAll(procFields, proci)
{
procFields[proci].write();
}
}
}
}
template<class Type>
void Foam::fvFieldDecomposer::decomposeFvSurfaceFields
(
const IOobjectList& objects
)
{
const word& fieldClassName = SurfaceField<Type>::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< nl << " Decomposing " << fieldClassName << "s" << nl << endl;
forAllConstIter(IOobjectList, fields, fieldIter)
{
Info<< " " << fieldIter()->name() << endl;
PtrList<SurfaceField<Type>> procFields =
decomposeFvSurfaceField<Type>(*fieldIter());
forAll(procFields, proci)
{
procFields[proci].write();
}
}
}
}
// ************************************************************************* //