Description
User convenience class to handle the input of time-varying rotational speed
in rad/s if \c omega is specified or rpm if \c rpm is specified.
Usage
For specifying the rotational speed in rpm of an MRF zone:
\verbatim
MRF
{
cellZone rotor;
origin (0 0 0);
axis (0 0 1);
rpm 60;
}
\endverbatim
or the equivalent specified in rad/s:
\verbatim
MRF
{
cellZone rotor;
origin (0 0 0);
axis (0 0 1);
rpm 6.28319;
}
\endverbatim
or for a tabulated ramped rotational speed of a solid body:
\verbatim
mover
{
type motionSolver;
libs ("libfvMeshMovers.so" "libfvMotionSolvers.so");
motionSolver solidBody;
cellZone innerCylinder;
solidBodyMotionFunction rotatingMotion;
origin (0 0 0);
axis (0 1 0);
rpm table
(
(0 0)
(0.01 6000)
(0.022 6000)
(0.03 4000)
(100 4000)
);
}
\endverbatim
The following classes have been updated to use the new Function1s::omega class:
solidBodyMotionFunctions::rotatingMotion
MRFZone
rotatingPressureInletOutletVelocityFvPatchVectorField
rotatingTotalPressureFvPatchScalarField
rotatingWallVelocityFvPatchVectorField
and all tutorials using these models and BCs updated to use rpm where appropriate.
Reference:
Figueiredo, R. A., Oishi, C. M., Afonso, A. M., Tasso, I. V. M., &
Cuminato, J. A. (2016).
A two-phase solver for complex fluids: Studies of the Weissenberg effect.
International Journal of Multiphase Flow, 84, 98-115.
In interFoam with momentumTransport simulationType set to twoPhaseTransport
separate stress models (laminar, non-Newtonian, LES or RAS) are instantiated for
each of the two phases allowing for different modeling for the phases.
This example case uses:
- phases "air" and "liquid"
- air phase
- constant/momentumTransport.air:
- stress model set to laminar, Newtonian
- constant/physicalProperties.air:
- transport set to const (Newtonian)
- mu (dynamic viscoity) = 1.84e-5
- liquid phase
- constant/momentumTransport.liquid:
- stress model set to laminar, Maxwell non-Newtonian
- nuM (kinematic viscosity) = 0.01476
- lambda = 0.018225
- constant/physicalProperties.liquid
- transport set to const (Newtonian)
- mu (dynamic viscoity) = 1.46
Liquid phase properties were calculated from the relations given in the paper:
- rho = 890 kg/m^3
- mu = mu_{s} + mu_{p} = 146 poise = 14.6 Pa.s
s = solvent (Newtonian), p = polymer (Maxwell)
- mu_{s}/mu_{p} = 1/9
=> mu_{s} = 14.6/10 = 1.46 Pa.s
=> nu_{p} = nuM = (9/10)*14.6/890 = 0.01476 m^2/s