Files
OpenFOAM-12/applications/utilities/preProcessing/mapFieldsPar/mapGeometricFields.C
Henry Weller 2f4dd4fe27 Code simplification: GeometricField<Type, fvPatchField, volMesh> -> VolField<Type>
Using the VolField<Type> partial specialisation of
GeometricField<Type, fvPatchField, volMesh>
simplifies the code and improves readability.
2022-12-02 22:04:45 +00:00

241 lines
7.2 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2022 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "mapGeometricFields.H"
#include "fvMeshToFvMesh.H"
#include "surfaceMesh.H"
#include "pointMesh.H"
#include "IOobjectList.H"
#include "OSspecific.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
template<class Type>
void evaluateConstraintTypes(VolField<Type>& fld)
{
typename VolField<Type>::
Boundary& fldBf = fld.boundaryFieldRef();
if
(
Pstream::defaultCommsType == Pstream::commsTypes::blocking
|| Pstream::defaultCommsType == Pstream::commsTypes::nonBlocking
)
{
label nReq = Pstream::nRequests();
forAll(fldBf, patchi)
{
fvPatchField<Type>& tgtField = fldBf[patchi];
if
(
tgtField.type() == tgtField.patch().patch().type()
&& polyPatch::constraintType(tgtField.patch().patch().type())
)
{
tgtField.initEvaluate(Pstream::defaultCommsType);
}
}
// Block for any outstanding requests
if
(
Pstream::parRun()
&& Pstream::defaultCommsType == Pstream::commsTypes::nonBlocking
)
{
Pstream::waitRequests(nReq);
}
forAll(fldBf, patchi)
{
fvPatchField<Type>& tgtField = fldBf[patchi];
if
(
tgtField.type() == tgtField.patch().patch().type()
&& polyPatch::constraintType(tgtField.patch().patch().type())
)
{
tgtField.evaluate(Pstream::defaultCommsType);
}
}
}
else if (Pstream::defaultCommsType == Pstream::commsTypes::scheduled)
{
const lduSchedule& patchSchedule =
fld.mesh().globalData().patchSchedule();
forAll(patchSchedule, patchEvali)
{
label patchi = patchSchedule[patchEvali].patch;
fvPatchField<Type>& tgtField = fldBf[patchi];
if
(
tgtField.type() == tgtField.patch().patch().type()
&& polyPatch::constraintType(tgtField.patch().patch().type())
)
{
if (patchSchedule[patchEvali].init)
{
tgtField.initEvaluate(Pstream::commsTypes::scheduled);
}
else
{
tgtField.evaluate(Pstream::commsTypes::scheduled);
}
}
}
}
}
template<class Type>
void mapVolTypeFields
(
const IOobjectList& objects,
const HashSet<word>& selectedFields,
const fvMeshToFvMesh& interp
)
{
const fvMesh& srcMesh = static_cast<const fvMesh&>(interp.srcMesh());
const fvMesh& tgtMesh = static_cast<const fvMesh&>(interp.tgtMesh());
IOobjectList fields = objects.lookupClass(VolField<Type>::typeName);
forAllIter(IOobjectList, fields, fieldIter)
{
const word& fieldName = fieldIter()->name();
if (selectedFields.empty() || selectedFields.found(fieldName))
{
const VolField<Type> fieldSource(*fieldIter(), srcMesh);
typeIOobject<VolField<Type>> targetIO
(
fieldName,
tgtMesh.time().name(),
tgtMesh,
IOobject::MUST_READ
);
if (targetIO.headerOk())
{
Info<< " interpolating onto existing field "
<< fieldName << endl;
VolField<Type> fieldTarget(targetIO, tgtMesh);
interp.mapSrcToTgt(fieldSource, fieldTarget);
evaluateConstraintTypes(fieldTarget);
fieldTarget.write();
}
else
{
Info<< " creating new field "
<< fieldName << endl;
targetIO.readOpt() = IOobject::NO_READ;
tmp<VolField<Type>> tfieldTarget
(
interp.mapSrcToTgt(fieldSource)
);
VolField<Type> fieldTarget(targetIO, tfieldTarget);
evaluateConstraintTypes(fieldTarget);
fieldTarget.write();
}
}
}
}
template<class Type, template<class> class GeoField>
void unMappedTypeFields(const IOobjectList& objects)
{
IOobjectList fields = objects.lookupClass(GeoField<Type>::typeName);
forAllConstIter(IOobjectList, fields, fieldIter)
{
mvBak(fieldIter()->objectPath(false), "unmapped");
}
}
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void Foam::mapGeometricFields
(
const fvMeshToFvMesh& interp,
const HashSet<word>& selectedFields,
const bool noLagrangian
)
{
const polyMesh& srcMesh = interp.srcMesh();
const polyMesh& tgtMesh = interp.tgtMesh();
{
// Search for list of source objects for this time
IOobjectList objects(srcMesh, srcMesh.time().name());
// Map the fields
#define MapVolTypeFields(Type, nullArg) \
mapVolTypeFields<Type> \
( \
objects, \
selectedFields, \
interp \
);
FOR_ALL_FIELD_TYPES(MapVolTypeFields);
#undef MapVolTypeFields
}
{
// Search for list of target objects for this time
IOobjectList objects(tgtMesh, tgtMesh.time().name());
// Mark surface and point fields as unmapped
#define UnMappedTypeFields(Type, GeoField) \
unMappedTypeFields<Type, GeoField>(objects);
FOR_ALL_FIELD_TYPES(UnMappedTypeFields, SurfaceField);
FOR_ALL_FIELD_TYPES(UnMappedTypeFields, PointField);
#undef UnMappedTypeFields
}
}
// ************************************************************************* //