Files
OpenFOAM-12/src/OpenFOAM/algorithms/indexedOctree/treeDataCell.C
Henry Weller 30bea84fac C++11 conformance and consistency: Added "move" constructors and assignment operators to OpenFOAM containers
Replaced all uses of complex Xfer class with C++11 "move" constructors and
assignment operators.  Removed the now redundant Xfer class.

This substantial changes improves consistency between OpenFOAM and the C++11 STL
containers and algorithms, reduces memory allocation and copy overhead when
returning containers from functions and simplifies maintenance of the core
libraries significantly.
2019-05-25 17:40:39 +01:00

315 lines
7.0 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2019 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "treeDataCell.H"
#include "indexedOctree.H"
#include "polyMesh.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(treeDataCell, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::treeBoundBox Foam::treeDataCell::calcCellBb(const label celli) const
{
const cellList& cells = mesh_.cells();
const faceList& faces = mesh_.faces();
const pointField& points = mesh_.points();
treeBoundBox cellBb
(
vector(great, great, great),
vector(-great, -great, -great)
);
const cell& cFaces = cells[celli];
forAll(cFaces, cFacei)
{
const face& f = faces[cFaces[cFacei]];
forAll(f, fp)
{
const point& p = points[f[fp]];
cellBb.min() = min(cellBb.min(), p);
cellBb.max() = max(cellBb.max(), p);
}
}
return cellBb;
}
void Foam::treeDataCell::update()
{
if (cacheBb_)
{
bbs_.setSize(cellLabels_.size());
forAll(cellLabels_, i)
{
bbs_[i] = calcCellBb(cellLabels_[i]);
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::treeDataCell::treeDataCell
(
const bool cacheBb,
const polyMesh& mesh,
const labelUList& cellLabels,
const polyMesh::cellDecomposition decompMode
)
:
mesh_(mesh),
cellLabels_(cellLabels),
cacheBb_(cacheBb),
decompMode_(decompMode)
{
update();
}
Foam::treeDataCell::treeDataCell
(
const bool cacheBb,
const polyMesh& mesh,
labelList&& cellLabels,
const polyMesh::cellDecomposition decompMode
)
:
mesh_(mesh),
cellLabels_(move(cellLabels)),
cacheBb_(cacheBb),
decompMode_(decompMode)
{
update();
}
Foam::treeDataCell::treeDataCell
(
const bool cacheBb,
const polyMesh& mesh,
const polyMesh::cellDecomposition decompMode
)
:
mesh_(mesh),
cellLabels_(identity(mesh_.nCells())),
cacheBb_(cacheBb),
decompMode_(decompMode)
{
update();
}
Foam::treeDataCell::findNearestOp::findNearestOp
(
const indexedOctree<treeDataCell>& tree
)
:
tree_(tree)
{}
Foam::treeDataCell::findIntersectOp::findIntersectOp
(
const indexedOctree<treeDataCell>& tree
)
:
tree_(tree)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::pointField Foam::treeDataCell::shapePoints() const
{
pointField cc(cellLabels_.size());
forAll(cellLabels_, i)
{
cc[i] = mesh_.cellCentres()[cellLabels_[i]];
}
return cc;
}
bool Foam::treeDataCell::overlaps
(
const label index,
const treeBoundBox& cubeBb
) const
{
if (cacheBb_)
{
return cubeBb.overlaps(bbs_[index]);
}
else
{
return cubeBb.overlaps(calcCellBb(cellLabels_[index]));
}
}
bool Foam::treeDataCell::contains
(
const label index,
const point& sample
) const
{
return mesh_.pointInCell(sample, cellLabels_[index], decompMode_);
}
void Foam::treeDataCell::findNearestOp::operator()
(
const labelUList& indices,
const point& sample,
scalar& nearestDistSqr,
label& minIndex,
point& nearestPoint
) const
{
const treeDataCell& shape = tree_.shapes();
forAll(indices, i)
{
label index = indices[i];
label celli = shape.cellLabels()[index];
scalar distSqr = magSqr(sample - shape.mesh().cellCentres()[celli]);
if (distSqr < nearestDistSqr)
{
nearestDistSqr = distSqr;
minIndex = index;
nearestPoint = shape.mesh().cellCentres()[celli];
}
}
}
void Foam::treeDataCell::findNearestOp::operator()
(
const labelUList& indices,
const linePointRef& ln,
treeBoundBox& tightest,
label& minIndex,
point& linePoint,
point& nearestPoint
) const
{
NotImplemented;
}
bool Foam::treeDataCell::findIntersectOp::operator()
(
const label index,
const point& start,
const point& end,
point& intersectionPoint
) const
{
const treeDataCell& shape = tree_.shapes();
// Do quick rejection test
if (shape.cacheBb_)
{
const treeBoundBox& cellBb = shape.bbs_[index];
if ((cellBb.posBits(start) & cellBb.posBits(end)) != 0)
{
// Start and end in same block outside of cellBb.
return false;
}
}
else
{
const treeBoundBox cellBb = shape.calcCellBb(shape.cellLabels_[index]);
if ((cellBb.posBits(start) & cellBb.posBits(end)) != 0)
{
// Start and end in same block outside of cellBb.
return false;
}
}
// Do intersection with all faces of cell
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Disable picking up intersections behind us.
scalar oldTol = intersection::setPlanarTol(0.0);
const cell& cFaces = shape.mesh_.cells()[shape.cellLabels_[index]];
const vector dir(end - start);
scalar minDistSqr = magSqr(dir);
bool hasMin = false;
forAll(cFaces, i)
{
const face& f = shape.mesh_.faces()[cFaces[i]];
pointHit inter = f.ray
(
start,
dir,
shape.mesh_.points(),
intersection::algorithm::halfRay
);
if (inter.hit() && sqr(inter.distance()) <= minDistSqr)
{
// Note: no extra test on whether intersection is in front of us
// since using half_ray AND zero tolerance. (note that tolerance
// is used to look behind us)
minDistSqr = sqr(inter.distance());
intersectionPoint = inter.hitPoint();
hasMin = true;
}
}
// Restore picking tolerance
intersection::setPlanarTol(oldTol);
return hasMin;
}
// ************************************************************************* //