Files
OpenFOAM-12/applications/solvers/basic/scalarTransportFoam/scalarTransportFoam.C
Henry Weller 3ef3e96c3f Time: Added run-time selectable userTime option
replacing the virtual functions overridden in engineTime.

Now the userTime conversion function in Time is specified in system/controlDict
such that the solver as well as all pre- and post-processing tools also operate
correctly with the chosen user-time.

For example the user-time and rpm in the tutorials/combustion/XiEngineFoam/kivaTest case are
now specified in system/controlDict:

userTime
{
    type     engine;
    rpm      1500;
}

The default specification is real-time:

userTime
{
    type     real;
}

but this entry can be omitted as the real-time class is instantiated
automatically if the userTime entry is not present in system/controlDict.
2021-10-19 09:09:01 +01:00

88 lines
2.5 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2021 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
scalarTransportFoam
Description
Solves the steady or transient transport equation for a passive scalar.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "fvModels.H"
#include "fvConstraints.H"
#include "simpleControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
simpleControl simple(mesh);
#include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nCalculating scalar transport\n" << endl;
#include "CourantNo.H"
while (simple.loop(runTime))
{
Info<< "Time = " << runTime.userTimeName() << nl << endl;
fvModels.correct();
while (simple.correctNonOrthogonal())
{
fvScalarMatrix TEqn
(
fvm::ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(DT, T)
==
fvModels.source(T)
);
TEqn.relax();
fvConstraints.constrain(TEqn);
TEqn.solve();
fvConstraints.constrain(T);
}
runTime.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //