Files
OpenFOAM-12/applications/utilities/parallelProcessing/decomposePar/fvFieldDecomposerDecomposeFields.C
Will Bainbridge 3995456979 parallelProcessing: Various improvements
boundaryProcAddressing has been removed. This has not been needed for a
long time. decomposePar has been optimised for mininum IO, rather than
minimum memory usage. decomposePar has also been corrected so that it
can decompose sequences of time-varying meshes.
2022-03-10 20:31:30 +00:00

382 lines
11 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2022 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "fvFieldDecomposer.H"
#include "processorFvPatchField.H"
#include "processorFvsPatchField.H"
#include "processorCyclicFvPatchField.H"
#include "processorCyclicFvsPatchField.H"
#include "emptyFvPatchFields.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
Foam::tmp<Foam::Field<Type>> Foam::fvFieldDecomposer::mapField
(
const Field<Type>& field,
const labelUList& mapAndSign,
const bool applyFlip
)
{
tmp<Field<Type>> tfld(new Field<Type>(mapAndSign.size()));
Field<Type>& fld = tfld.ref();
if (applyFlip)
{
forAll(mapAndSign, i)
{
if (mapAndSign[i] < 0)
{
fld[i] = -field[-mapAndSign[i] - 1];
}
else
{
fld[i] = field[mapAndSign[i] - 1];
}
}
}
else
{
// Ignore face flipping
fld.map(field, mag(mapAndSign) - 1);
}
return tfld;
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::fvPatchField, Foam::volMesh>>
Foam::fvFieldDecomposer::decomposeField
(
const GeometricField<Type, fvPatchField, volMesh>& field,
const bool allowUnknownPatchFields
) const
{
// 1. Create the complete field with dummy patch fields
PtrList<fvPatchField<Type>> patchFields(procMesh_.boundary().size());
forAll(procMesh_.boundary(), procPatchi)
{
patchFields.set
(
procPatchi,
fvPatchField<Type>::New
(
calculatedFvPatchField<Type>::typeName,
procMesh_.boundary()[procPatchi],
DimensionedField<Type, volMesh>::null()
)
);
}
// Create the field for the processor
tmp<GeometricField<Type, fvPatchField, volMesh>> tresF
(
new GeometricField<Type, fvPatchField, volMesh>
(
IOobject
(
field.name(),
procMesh_.time().timeName(),
procMesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
procMesh_,
field.dimensions(),
Field<Type>(field.primitiveField(), cellAddressing_),
patchFields
)
);
GeometricField<Type, fvPatchField, volMesh>& resF = tresF.ref();
// 2. Change the fvPatchFields to the correct type using a mapper
// constructor (with reference to the now correct internal field)
typename GeometricField<Type, fvPatchField, volMesh>::
Boundary& bf = resF.boundaryFieldRef();
forAll(bf, procPatchi)
{
const fvPatch& procPatch = procMesh_.boundary()[procPatchi];
// Determine the index of the corresponding complete patch
label completePatchi = -1;
if (procPatchi < completeMesh_.boundary().size())
{
completePatchi = procPatchi;
}
else if (isA<processorCyclicFvPatch>(procPatch))
{
const label referPatchi =
refCast<const processorCyclicPolyPatch>
(procPatch.patch()).referPatchID();
if (field.boundaryField()[referPatchi].overridesConstraint())
{
completePatchi = referPatchi;
}
}
if (completePatchi != -1)
{
bf.set
(
procPatchi,
fvPatchField<Type>::New
(
field.boundaryField()[completePatchi],
procPatch,
resF(),
patchFieldDecomposers_[procPatchi]
)
);
}
else if (isA<processorCyclicFvPatch>(procPatch))
{
bf.set
(
procPatchi,
new processorCyclicFvPatchField<Type>
(
procPatch,
resF(),
processorVolPatchFieldDecomposers_[procPatchi]
(
field.primitiveField()
)
)
);
}
else if (isA<processorFvPatch>(procPatch))
{
bf.set
(
procPatchi,
new processorFvPatchField<Type>
(
procPatch,
resF(),
processorVolPatchFieldDecomposers_[procPatchi]
(
field.primitiveField()
)
)
);
}
else if (allowUnknownPatchFields)
{
bf.set
(
procPatchi,
new emptyFvPatchField<Type>
(
procPatch,
resF()
)
);
}
else
{
FatalErrorInFunction
<< "Unknown type." << abort(FatalError);
}
}
// Create the field for the processor
return tresF;
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::fvsPatchField, Foam::surfaceMesh>>
Foam::fvFieldDecomposer::decomposeField
(
const GeometricField<Type, fvsPatchField, surfaceMesh>& field
) const
{
// Problem with addressing when a processor patch picks up both internal
// faces and faces from cyclic boundaries. This is a bit of a hack, but
// I cannot find a better solution without making the internal storage
// mechanism for surfaceFields correspond to the one of faces in polyMesh
// (i.e. using slices)
Field<Type> allFaceField(field.mesh().nFaces());
forAll(field.primitiveField(), i)
{
allFaceField[i] = field.primitiveField()[i];
}
forAll(field.boundaryField(), patchi)
{
const Field<Type> & p = field.boundaryField()[patchi];
const label patchStart = field.mesh().boundaryMesh()[patchi].start();
forAll(p, i)
{
allFaceField[patchStart + i] = p[i];
}
}
// 1. Create the complete field with dummy patch fields
PtrList<fvsPatchField<Type>> patchFields(procMesh_.boundary().size());
forAll(procMesh_.boundary(), procPatchi)
{
patchFields.set
(
procPatchi,
fvsPatchField<Type>::New
(
calculatedFvsPatchField<Type>::typeName,
procMesh_.boundary()[procPatchi],
DimensionedField<Type, surfaceMesh>::null()
)
);
}
tmp<GeometricField<Type, fvsPatchField, surfaceMesh>> tresF
(
new GeometricField<Type, fvsPatchField, surfaceMesh>
(
IOobject
(
field.name(),
procMesh_.time().timeName(),
procMesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
procMesh_,
field.dimensions(),
mapField
(
field,
labelList::subList
(
faceAddressing_,
procMesh_.nInternalFaces()
),
isFlux(field)
),
patchFields
)
);
GeometricField<Type, fvsPatchField, surfaceMesh>& resF = tresF.ref();
// 2. Change the fvsPatchFields to the correct type using a mapper
// constructor (with reference to the now correct internal field)
typename GeometricField<Type, fvsPatchField, surfaceMesh>::
Boundary& bf = resF.boundaryFieldRef();
forAll(procMesh_.boundary(), procPatchi)
{
const fvPatch& procPatch = procMesh_.boundary()[procPatchi];
if (procPatchi < completeMesh_.boundary().size())
{
bf.set
(
procPatchi,
fvsPatchField<Type>::New
(
field.boundaryField()[procPatchi],
procPatch,
resF(),
patchFieldDecomposers_[procPatchi]
)
);
}
else if (isA<processorCyclicFvPatch>(procPatch))
{
// Do our own mapping. Avoids a lot of mapping complexity.
bf.set
(
procPatchi,
new processorCyclicFvsPatchField<Type>
(
procPatch,
resF(),
mapField
(
allFaceField,
procPatch.patchSlice(faceAddressing_),
isFlux(field)
)
)
);
}
else if (isA<processorFvPatch>(procPatch))
{
// Do our own mapping. Avoids a lot of mapping complexity.
bf.set
(
procPatchi,
new processorFvsPatchField<Type>
(
procPatch,
resF(),
mapField
(
allFaceField,
procPatch.patchSlice(faceAddressing_),
isFlux(field)
)
)
);
}
else
{
FatalErrorInFunction
<< "Unknown type." << abort(FatalError);
}
}
// Create the field for the processor
return tresF;
}
template<class GeoField>
void Foam::fvFieldDecomposer::decomposeFields
(
const PtrList<GeoField>& fields
) const
{
forAll(fields, fieldi)
{
decomposeField(fields[fieldi])().write();
}
}
// ************************************************************************* //