Files
OpenFOAM-12/src/OpenFOAM/meshes/polyMesh/polyMeshCheck/polyMeshTools.C
2018-07-06 21:42:54 +01:00

283 lines
7.3 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2012-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "polyMeshTools.H"
#include "syncTools.H"
#include "pyramidPointFaceRef.H"
#include "primitiveMeshTools.H"
#include "polyMeshTools.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::tmp<Foam::scalarField> Foam::polyMeshTools::faceOrthogonality
(
const polyMesh& mesh,
const vectorField& areas,
const vectorField& cc
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
tmp<scalarField> tortho(new scalarField(mesh.nFaces(), 1.0));
scalarField& ortho = tortho.ref();
// Internal faces
forAll(nei, facei)
{
ortho[facei] = primitiveMeshTools::faceOrthogonality
(
cc[own[facei]],
cc[nei[facei]],
areas[facei]
);
}
// Coupled faces
pointField neighbourCc;
syncTools::swapBoundaryCellPositions(mesh, cc, neighbourCc);
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
if (pp.coupled())
{
forAll(pp, i)
{
label facei = pp.start() + i;
label bFacei = facei - mesh.nInternalFaces();
ortho[facei] = primitiveMeshTools::faceOrthogonality
(
cc[own[facei]],
neighbourCc[bFacei],
areas[facei]
);
}
}
}
return tortho;
}
Foam::tmp<Foam::scalarField> Foam::polyMeshTools::faceSkewness
(
const polyMesh& mesh,
const pointField& p,
const vectorField& fCtrs,
const vectorField& fAreas,
const vectorField& cellCtrs
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
tmp<scalarField> tskew(new scalarField(mesh.nFaces()));
scalarField& skew = tskew.ref();
forAll(nei, facei)
{
skew[facei] = primitiveMeshTools::faceSkewness
(
mesh,
p,
fCtrs,
fAreas,
facei,
cellCtrs[own[facei]],
cellCtrs[nei[facei]]
);
}
// Boundary faces: consider them to have only skewness error.
// (i.e. treat as if mirror cell on other side)
pointField neighbourCc;
syncTools::swapBoundaryCellPositions(mesh, cellCtrs, neighbourCc);
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
if (pp.coupled())
{
forAll(pp, i)
{
label facei = pp.start() + i;
label bFacei = facei - mesh.nInternalFaces();
skew[facei] = primitiveMeshTools::faceSkewness
(
mesh,
p,
fCtrs,
fAreas,
facei,
cellCtrs[own[facei]],
neighbourCc[bFacei]
);
}
}
else
{
forAll(pp, i)
{
label facei = pp.start() + i;
skew[facei] = primitiveMeshTools::boundaryFaceSkewness
(
mesh,
p,
fCtrs,
fAreas,
facei,
cellCtrs[own[facei]]
);
}
}
}
return tskew;
}
Foam::tmp<Foam::scalarField> Foam::polyMeshTools::faceWeights
(
const polyMesh& mesh,
const vectorField& fCtrs,
const vectorField& fAreas,
const vectorField& cellCtrs
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
tmp<scalarField> tweight(new scalarField(mesh.nFaces(), 1.0));
scalarField& weight = tweight.ref();
// Internal faces
forAll(nei, facei)
{
const point& fc = fCtrs[facei];
const vector& fa = fAreas[facei];
scalar dOwn = mag(fa & (fc-cellCtrs[own[facei]]));
scalar dNei = mag(fa & (cellCtrs[nei[facei]]-fc));
weight[facei] = min(dNei,dOwn)/(dNei+dOwn+vSmall);
}
// Coupled faces
pointField neiCc;
syncTools::swapBoundaryCellPositions(mesh, cellCtrs, neiCc);
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
if (pp.coupled())
{
forAll(pp, i)
{
label facei = pp.start() + i;
label bFacei = facei - mesh.nInternalFaces();
const point& fc = fCtrs[facei];
const vector& fa = fAreas[facei];
scalar dOwn = mag(fa & (fc-cellCtrs[own[facei]]));
scalar dNei = mag(fa & (neiCc[bFacei]-fc));
weight[facei] = min(dNei,dOwn)/(dNei+dOwn+vSmall);
}
}
}
return tweight;
}
Foam::tmp<Foam::scalarField> Foam::polyMeshTools::volRatio
(
const polyMesh& mesh,
const scalarField& vol
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
tmp<scalarField> tratio(new scalarField(mesh.nFaces(), 1.0));
scalarField& ratio = tratio.ref();
// Internal faces
forAll(nei, facei)
{
scalar volOwn = vol[own[facei]];
scalar volNei = vol[nei[facei]];
ratio[facei] = min(volOwn,volNei)/(max(volOwn, volNei)+vSmall);
}
// Coupled faces
scalarField neiVol;
syncTools::swapBoundaryCellList(mesh, vol, neiVol);
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
if (pp.coupled())
{
forAll(pp, i)
{
label facei = pp.start() + i;
label bFacei = facei - mesh.nInternalFaces();
scalar volOwn = vol[own[facei]];
scalar volNei = neiVol[bFacei];
ratio[facei] = min(volOwn,volNei)/(max(volOwn, volNei)+vSmall);
}
}
}
return tratio;
}
// ************************************************************************* //