Files
OpenFOAM-12/src/OpenFOAM/meshes/polyMesh/polyMeshCheck/polyMeshTools.C
Henry Weller 4758c2ac86 tmp: Updated to store and preserve the const-ness of the reference to a constant object
This change requires that the de-reference operator '()' returns a
const-reference to the object stored irrespective of the const-ness of
object stored and the new member function 'ref()' is provided to return
an non-const reference to stored object which throws a fatal error if the
stored object is const.

In order to smooth the transition to this new safer 'tmp' the now
deprecated and unsafe non-const de-reference operator '()' is still
provided by default but may be switched-off with the compilation switch
'CONST_TMP'.

The main OpenFOAM library has already been upgraded and '-DCONST_TMP'
option specified in the 'options' file to switch to the new 'tmp'
behavior.  The rest of OpenFOAM-dev will be upgraded over the following
few weeks.

Henry G. Weller
CFD Direct
2016-02-22 16:23:21 +00:00

283 lines
7.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "polyMeshTools.H"
#include "syncTools.H"
#include "pyramidPointFaceRef.H"
#include "primitiveMeshTools.H"
#include "polyMeshTools.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::tmp<Foam::scalarField> Foam::polyMeshTools::faceOrthogonality
(
const polyMesh& mesh,
const vectorField& areas,
const vectorField& cc
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
tmp<scalarField> tortho(new scalarField(mesh.nFaces(), 1.0));
scalarField& ortho = tortho.ref();
// Internal faces
forAll(nei, faceI)
{
ortho[faceI] = primitiveMeshTools::faceOrthogonality
(
cc[own[faceI]],
cc[nei[faceI]],
areas[faceI]
);
}
// Coupled faces
pointField neighbourCc;
syncTools::swapBoundaryCellPositions(mesh, cc, neighbourCc);
forAll(pbm, patchI)
{
const polyPatch& pp = pbm[patchI];
if (pp.coupled())
{
forAll(pp, i)
{
label faceI = pp.start() + i;
label bFaceI = faceI - mesh.nInternalFaces();
ortho[faceI] = primitiveMeshTools::faceOrthogonality
(
cc[own[faceI]],
neighbourCc[bFaceI],
areas[faceI]
);
}
}
}
return tortho;
}
Foam::tmp<Foam::scalarField> Foam::polyMeshTools::faceSkewness
(
const polyMesh& mesh,
const pointField& p,
const vectorField& fCtrs,
const vectorField& fAreas,
const vectorField& cellCtrs
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
tmp<scalarField> tskew(new scalarField(mesh.nFaces()));
scalarField& skew = tskew.ref();
forAll(nei, faceI)
{
skew[faceI] = primitiveMeshTools::faceSkewness
(
mesh,
p,
fCtrs,
fAreas,
faceI,
cellCtrs[own[faceI]],
cellCtrs[nei[faceI]]
);
}
// Boundary faces: consider them to have only skewness error.
// (i.e. treat as if mirror cell on other side)
pointField neighbourCc;
syncTools::swapBoundaryCellPositions(mesh, cellCtrs, neighbourCc);
forAll(pbm, patchI)
{
const polyPatch& pp = pbm[patchI];
if (pp.coupled())
{
forAll(pp, i)
{
label faceI = pp.start() + i;
label bFaceI = faceI - mesh.nInternalFaces();
skew[faceI] = primitiveMeshTools::faceSkewness
(
mesh,
p,
fCtrs,
fAreas,
faceI,
cellCtrs[own[faceI]],
neighbourCc[bFaceI]
);
}
}
else
{
forAll(pp, i)
{
label faceI = pp.start() + i;
skew[faceI] = primitiveMeshTools::boundaryFaceSkewness
(
mesh,
p,
fCtrs,
fAreas,
faceI,
cellCtrs[own[faceI]]
);
}
}
}
return tskew;
}
Foam::tmp<Foam::scalarField> Foam::polyMeshTools::faceWeights
(
const polyMesh& mesh,
const vectorField& fCtrs,
const vectorField& fAreas,
const vectorField& cellCtrs
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
tmp<scalarField> tweight(new scalarField(mesh.nFaces(), 1.0));
scalarField& weight = tweight.ref();
// Internal faces
forAll(nei, faceI)
{
const point& fc = fCtrs[faceI];
const vector& fa = fAreas[faceI];
scalar dOwn = mag(fa & (fc-cellCtrs[own[faceI]]));
scalar dNei = mag(fa & (cellCtrs[nei[faceI]]-fc));
weight[faceI] = min(dNei,dOwn)/(dNei+dOwn+VSMALL);
}
// Coupled faces
pointField neiCc;
syncTools::swapBoundaryCellPositions(mesh, cellCtrs, neiCc);
forAll(pbm, patchI)
{
const polyPatch& pp = pbm[patchI];
if (pp.coupled())
{
forAll(pp, i)
{
label faceI = pp.start() + i;
label bFaceI = faceI - mesh.nInternalFaces();
const point& fc = fCtrs[faceI];
const vector& fa = fAreas[faceI];
scalar dOwn = mag(fa & (fc-cellCtrs[own[faceI]]));
scalar dNei = mag(fa & (neiCc[bFaceI]-fc));
weight[faceI] = min(dNei,dOwn)/(dNei+dOwn+VSMALL);
}
}
}
return tweight;
}
Foam::tmp<Foam::scalarField> Foam::polyMeshTools::volRatio
(
const polyMesh& mesh,
const scalarField& vol
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
tmp<scalarField> tratio(new scalarField(mesh.nFaces(), 1.0));
scalarField& ratio = tratio.ref();
// Internal faces
forAll(nei, faceI)
{
scalar volOwn = vol[own[faceI]];
scalar volNei = vol[nei[faceI]];
ratio[faceI] = min(volOwn,volNei)/(max(volOwn, volNei)+VSMALL);
}
// Coupled faces
scalarField neiVol;
syncTools::swapBoundaryCellList(mesh, vol, neiVol);
forAll(pbm, patchI)
{
const polyPatch& pp = pbm[patchI];
if (pp.coupled())
{
forAll(pp, i)
{
label faceI = pp.start() + i;
label bFaceI = faceI - mesh.nInternalFaces();
scalar volOwn = vol[own[faceI]];
scalar volNei = neiVol[bFaceI];
ratio[faceI] = min(volOwn,volNei)/(max(volOwn, volNei)+VSMALL);
}
}
}
return tratio;
}
// ************************************************************************* //