Files
OpenFOAM-12/applications/utilities/parallelProcessing/decomposePar/domainDecomposition.C
Will Bainbridge 87bce82854 coupledPolyPatch: Rewrite transformations and ordering
The calculation and input/output of transformations has been rewritten
for all coupled patches. This replaces multiple duplicated, inconsistent
and incomplete implementations of transformation handling which were
spread across the different coupled patch types.

Transformations are now calculated or specified once, typically during
mesh construction or manipulation, and are written out with the boundary
data. They are never re-calculated. Mesh changes should not change the
transformation across a coupled interface; to do so would violate the
transformation.

Transformations are now calculated using integral properties of the
patches. This is more numerically stable that the previous methods which
functioned in terms of individual faces. The new routines are also able
to automatically calculate non-zero centres of rotation.

The user input of transformations is backwards compatible, and permits
the user to manually specify varying amounts of the transformation
geometry. Anything left unspecified gets automatically computed from the
patch geometry. Supported specifications are:

    1) No specification. Transformations on cyclics are automatically
    generated, and cyclicAMI-type patches assume no transformation. For
    example (in system/blockMeshDict):

        cyclicLeft
        {
            type                cyclic;
            neighbourPatch      cyclicRight;
            faces               ((0 1 2 3));
        }

        cyclicRight
        {
            type                cyclic;
            neighbourPatch      cyclicLeft;
            faces               ((4 5 6 7));
        }

    2) Partial specification. The type of transformation is specified
    by the user, as well as the coordinate system if the transform is
    rotational. The rotation angle or separation vector is still
    automatically generated. This form is useful as the signs of the
    angle and separation are opposite on different sides of an interface
    and can be difficult to specify correctly. For example:

        cyclicLeft
        {
            type                cyclic;
            neighbourPatch      cyclicRight;
            transformType       translational;
            faces               ((0 1 2 3));
        }

        cyclicRight
        {
            type                cyclic;
            neighbourPatch      cyclicLeft;
            transformType       translational;
            faces               ((4 5 6 7));
        }

        cyclicAMILeft
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMIRight;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            faces               ((8 9 10 11));
        }

        cyclicAMIRight
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMILeft;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            faces               ((12 13 14 15));
        }

    3) Full specification. All parameters of the transformation are
    given. For example:

        cyclicLeft
        {
            type                cyclic;
            neighbourPatch      cyclicRight;
            transformType       translational;
            separaion           (-0.01 0 0);
            faces               ((0 1 2 3));
        }

        cyclicRight
        {
            type                cyclic;
            neighbourPatch      cyclicLeft;
            transformType       translational;
            separaion           (0.01 0 0);
            faces               ((4 5 6 7));
        }

        cyclicAMILeft
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMIRight;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            rotationAngle       60;
            faces               ((8 9 10 11));
        }

        cyclicAMIRight
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMILeft;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            rotationAngle       60;
            faces               ((12 13 14 15));
        }

Automatic ordering of faces and points across coupled patches has also
been rewritten, again replacing multiple unsatisfactory implementations.

The new ordering method is more robust on poor meshes as it
geometrically matches only a single face (per contiguous region of the
patch) in order to perform the ordering, and this face is chosen to be
the one with the highest quality. A failure in ordering now only occurs
if the best face in the patch cannot be geometrically matched, whether
as previously the worst face could cause the algorithm to fail.

The oldCyclicPolyPatch has been removed, and the mesh converters which
previously used it now all generate ordered cyclic and baffle patches
directly. This removes the need to run foamUpgradeCyclics after
conversion. In addition the fluent3DMeshToFoam converter now supports
conversion of periodic/shadow pairs to OpenFOAM cyclic patches.
2020-01-22 11:45:18 +00:00

971 lines
28 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2020 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "domainDecomposition.H"
#include "dictionary.H"
#include "labelIOList.H"
#include "processorPolyPatch.H"
#include "processorCyclicPolyPatch.H"
#include "fvMesh.H"
#include "OSspecific.H"
#include "Map.H"
#include "DynamicList.H"
#include "fvFieldDecomposer.H"
#include "IOobjectList.H"
#include "cellSet.H"
#include "faceSet.H"
#include "pointSet.H"
#include "decompositionModel.H"
#include "hexRef8Data.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::domainDecomposition::mark
(
const labelList& zoneElems,
const label zoneI,
labelList& elementToZone
)
{
forAll(zoneElems, i)
{
label pointi = zoneElems[i];
if (elementToZone[pointi] == -1)
{
// First occurrence
elementToZone[pointi] = zoneI;
}
else if (elementToZone[pointi] >= 0)
{
// Multiple zones
elementToZone[pointi] = -2;
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::domainDecomposition::domainDecomposition
(
const IOobject& io,
const fileName& dictFile
)
:
fvMesh(io),
facesInstancePointsPtr_
(
pointsInstance() != facesInstance()
? new pointIOField
(
IOobject
(
"points",
facesInstance(),
polyMesh::meshSubDir,
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
)
: nullptr
),
nProcs_
(
decompositionModel::New
(
*this,
dictFile
).lookup<int>("numberOfSubdomains")
),
distributed_(false),
cellToProc_(nCells()),
procPointAddressing_(nProcs_),
procFaceAddressing_(nProcs_),
procCellAddressing_(nProcs_),
procPatchSize_(nProcs_),
procPatchStartIndex_(nProcs_),
procNeighbourProcessors_(nProcs_),
procProcessorPatchSize_(nProcs_),
procProcessorPatchStartIndex_(nProcs_),
procProcessorPatchSubPatchIDs_(nProcs_),
procProcessorPatchSubPatchStarts_(nProcs_)
{
decompositionModel::New
(
*this,
dictFile
).readIfPresent("distributed", distributed_);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::domainDecomposition::~domainDecomposition()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::domainDecomposition::writeDecomposition(const bool decomposeSets)
{
Info<< "\nConstructing processor meshes" << endl;
// Mark point/faces/cells that are in zones.
// -1 : not in zone
// -2 : in multiple zones
// >= 0 : in single given zone
// This will give direct lookup of elements that are in a single zone
// and we'll only have to revert back to searching through all zones
// for the duplicate elements
// Point zones
labelList pointToZone(points().size(), -1);
forAll(pointZones(), zoneI)
{
mark(pointZones()[zoneI], zoneI, pointToZone);
}
// Face zones
labelList faceToZone(faces().size(), -1);
forAll(faceZones(), zoneI)
{
mark(faceZones()[zoneI], zoneI, faceToZone);
}
// Cell zones
labelList cellToZone(nCells(), -1);
forAll(cellZones(), zoneI)
{
mark(cellZones()[zoneI], zoneI, cellToZone);
}
PtrList<const cellSet> cellSets;
PtrList<const faceSet> faceSets;
PtrList<const pointSet> pointSets;
if (decomposeSets)
{
// Read sets
IOobjectList objects(*this, facesInstance(), "polyMesh/sets");
{
IOobjectList cSets(objects.lookupClass(cellSet::typeName));
forAllConstIter(IOobjectList, cSets, iter)
{
cellSets.append(new cellSet(*iter()));
}
}
{
IOobjectList fSets(objects.lookupClass(faceSet::typeName));
forAllConstIter(IOobjectList, fSets, iter)
{
faceSets.append(new faceSet(*iter()));
}
}
{
IOobjectList pSets(objects.lookupClass(pointSet::typeName));
forAllConstIter(IOobjectList, pSets, iter)
{
pointSets.append(new pointSet(*iter()));
}
}
}
// Load refinement data (if any)
hexRef8Data baseMeshData
(
IOobject
(
"dummy",
facesInstance(),
polyMesh::meshSubDir,
*this,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
)
);
label maxProcCells = 0;
label totProcFaces = 0;
label maxProcPatches = 0;
label totProcPatches = 0;
label maxProcFaces = 0;
// Write out the meshes
for (label proci = 0; proci < nProcs_; proci++)
{
// Create processor points
const labelList& curPointLabels = procPointAddressing_[proci];
const pointField& meshPoints = points();
labelList pointLookup(nPoints(), -1);
pointField procPoints(curPointLabels.size());
forAll(curPointLabels, pointi)
{
procPoints[pointi] = meshPoints[curPointLabels[pointi]];
pointLookup[curPointLabels[pointi]] = pointi;
}
// Create processor faces
const labelList& curFaceLabels = procFaceAddressing_[proci];
const faceList& meshFaces = faces();
labelList faceLookup(nFaces(), -1);
faceList procFaces(curFaceLabels.size());
forAll(curFaceLabels, facei)
{
// Mark the original face as used
// Remember to decrement the index by one (turning index)
//
label curF = mag(curFaceLabels[facei]) - 1;
faceLookup[curF] = facei;
// get the original face
labelList origFaceLabels;
if (curFaceLabels[facei] >= 0)
{
// face not turned
origFaceLabels = meshFaces[curF];
}
else
{
origFaceLabels = meshFaces[curF].reverseFace();
}
// translate face labels into local point list
face& procFaceLabels = procFaces[facei];
procFaceLabels.setSize(origFaceLabels.size());
forAll(origFaceLabels, pointi)
{
procFaceLabels[pointi] = pointLookup[origFaceLabels[pointi]];
}
}
// Create processor cells
const labelList& curCellLabels = procCellAddressing_[proci];
const cellList& meshCells = cells();
cellList procCells(curCellLabels.size());
forAll(curCellLabels, celli)
{
const labelList& origCellLabels = meshCells[curCellLabels[celli]];
cell& curCell = procCells[celli];
curCell.setSize(origCellLabels.size());
forAll(origCellLabels, cellFacei)
{
curCell[cellFacei] = faceLookup[origCellLabels[cellFacei]];
}
}
// Create processor mesh without a boundary
fileName processorCasePath
(
time().caseName()/fileName(word("processor") + Foam::name(proci))
);
// create a database
Time processorDb
(
Time::controlDictName,
time().rootPath(),
processorCasePath,
word("system"),
word("constant")
);
processorDb.setTime(time());
// create the mesh. Two situations:
// - points and faces come from the same time ('instance'). The mesh
// will get constructed in the same instance.
// - points come from a different time (moving mesh cases).
// It will read the points belonging to the faces instance and
// construct the procMesh with it which then gets handled as above.
// (so with 'old' geometry).
// Only at writing time will it additionally write the current
// points.
autoPtr<polyMesh> procMeshPtr;
if (facesInstancePointsPtr_.valid())
{
// Construct mesh from facesInstance.
pointField facesInstancePoints
(
facesInstancePointsPtr_(),
curPointLabels
);
procMeshPtr.reset
(
new polyMesh
(
IOobject
(
this->polyMesh::name(), // region of undecomposed mesh
facesInstance(),
processorDb
),
move(facesInstancePoints),
move(procFaces),
move(procCells)
)
);
}
else
{
procMeshPtr.reset
(
new polyMesh
(
IOobject
(
this->polyMesh::name(), // region of undecomposed mesh
facesInstance(),
processorDb
),
move(procPoints),
move(procFaces),
move(procCells)
)
);
}
polyMesh& procMesh = procMeshPtr();
// Create processor boundary patches
const labelList& curPatchSizes = procPatchSize_[proci];
const labelList& curPatchStarts = procPatchStartIndex_[proci];
const labelList& curNeighbourProcessors =
procNeighbourProcessors_[proci];
const labelList& curProcessorPatchSizes =
procProcessorPatchSize_[proci];
const labelList& curProcessorPatchStarts =
procProcessorPatchStartIndex_[proci];
const labelListList& curSubPatchIDs =
procProcessorPatchSubPatchIDs_[proci];
const labelListList& curSubStarts =
procProcessorPatchSubPatchStarts_[proci];
const polyPatchList& meshPatches = boundaryMesh();
// Count the number of inter-proc patches
label nInterProcPatches = 0;
forAll(curSubPatchIDs, procPatchi)
{
nInterProcPatches += curSubPatchIDs[procPatchi].size();
}
List<polyPatch*> procPatches
(
curPatchSizes.size() + nInterProcPatches,
reinterpret_cast<polyPatch*>(0)
);
label nPatches = 0;
forAll(curPatchSizes, patchi)
{
// Get the face labels consistent with the field mapping
// (reuse the patch field mappers)
const polyPatch& meshPatch = meshPatches[patchi];
fvFieldDecomposer::patchFieldDecomposer patchMapper
(
SubList<label>
(
curFaceLabels,
curPatchSizes[patchi],
curPatchStarts[patchi]
),
meshPatch.start()
);
// Map existing patches
procPatches[nPatches] = meshPatch.clone
(
procMesh.boundaryMesh(),
nPatches,
patchMapper.addressing(),
curPatchStarts[patchi]
).ptr();
nPatches++;
}
forAll(curProcessorPatchSizes, procPatchi)
{
const labelList& subPatchID = curSubPatchIDs[procPatchi];
const labelList& subStarts = curSubStarts[procPatchi];
label curStart = curProcessorPatchStarts[procPatchi];
forAll(subPatchID, i)
{
label size =
(
i < subPatchID.size()-1
? subStarts[i+1] - subStarts[i]
: curProcessorPatchSizes[procPatchi] - subStarts[i]
);
if (subPatchID[i] == -1)
{
// From internal faces
procPatches[nPatches] =
new processorPolyPatch
(
size,
curStart,
nPatches,
procMesh.boundaryMesh(),
proci,
curNeighbourProcessors[procPatchi]
);
}
else
{
const coupledPolyPatch& pcPatch
= refCast<const coupledPolyPatch>
(
boundaryMesh()[subPatchID[i]]
);
procPatches[nPatches] =
new processorCyclicPolyPatch
(
size,
curStart,
nPatches,
procMesh.boundaryMesh(),
proci,
curNeighbourProcessors[procPatchi],
pcPatch.name()
);
}
curStart += size;
nPatches++;
}
}
// Add boundary patches
procMesh.addPatches(procPatches);
// Create and add zones
// Point zones
{
const pointZoneMesh& pz = pointZones();
// Go through all the zoned points and find out if they
// belong to a zone. If so, add it to the zone as
// necessary
List<DynamicList<label>> zonePoints(pz.size());
// Estimate size
forAll(zonePoints, zoneI)
{
zonePoints[zoneI].setCapacity(pz[zoneI].size() / nProcs_);
}
// Use the pointToZone map to find out the single zone (if any),
// use slow search only for shared points.
forAll(curPointLabels, pointi)
{
label curPoint = curPointLabels[pointi];
label zoneI = pointToZone[curPoint];
if (zoneI >= 0)
{
// Single zone.
zonePoints[zoneI].append(pointi);
}
else if (zoneI == -2)
{
// Multiple zones. Lookup.
forAll(pz, zoneI)
{
label index = pz[zoneI].whichPoint(curPoint);
if (index != -1)
{
zonePoints[zoneI].append(pointi);
}
}
}
}
procMesh.pointZones().clearAddressing();
procMesh.pointZones().setSize(zonePoints.size());
forAll(zonePoints, zoneI)
{
procMesh.pointZones().set
(
zoneI,
pz[zoneI].clone
(
procMesh.pointZones(),
zoneI,
zonePoints[zoneI].shrink()
)
);
}
if (pz.size())
{
// Force writing on all processors
procMesh.pointZones().writeOpt() = IOobject::AUTO_WRITE;
}
}
// Face zones
{
const faceZoneMesh& fz = faceZones();
// Go through all the zoned face and find out if they
// belong to a zone. If so, add it to the zone as
// necessary
List<DynamicList<label>> zoneFaces(fz.size());
List<DynamicList<bool>> zoneFaceFlips(fz.size());
// Estimate size
forAll(zoneFaces, zoneI)
{
label procSize = fz[zoneI].size() / nProcs_;
zoneFaces[zoneI].setCapacity(procSize);
zoneFaceFlips[zoneI].setCapacity(procSize);
}
// Go through all the zoned faces and find out if they
// belong to a zone. If so, add it to the zone as
// necessary
forAll(curFaceLabels, facei)
{
// Remember to decrement the index by one (turning index)
//
label curF = mag(curFaceLabels[facei]) - 1;
label zoneI = faceToZone[curF];
if (zoneI >= 0)
{
// Single zone. Add the face
zoneFaces[zoneI].append(facei);
label index = fz[zoneI].whichFace(curF);
bool flip = fz[zoneI].flipMap()[index];
if (curFaceLabels[facei] < 0)
{
flip = !flip;
}
zoneFaceFlips[zoneI].append(flip);
}
else if (zoneI == -2)
{
// Multiple zones. Lookup.
forAll(fz, zoneI)
{
label index = fz[zoneI].whichFace(curF);
if (index != -1)
{
zoneFaces[zoneI].append(facei);
bool flip = fz[zoneI].flipMap()[index];
if (curFaceLabels[facei] < 0)
{
flip = !flip;
}
zoneFaceFlips[zoneI].append(flip);
}
}
}
}
procMesh.faceZones().clearAddressing();
procMesh.faceZones().setSize(zoneFaces.size());
forAll(zoneFaces, zoneI)
{
procMesh.faceZones().set
(
zoneI,
fz[zoneI].clone
(
zoneFaces[zoneI].shrink(), // addressing
zoneFaceFlips[zoneI].shrink(), // flipmap
zoneI,
procMesh.faceZones()
)
);
}
if (fz.size())
{
// Force writing on all processors
procMesh.faceZones().writeOpt() = IOobject::AUTO_WRITE;
}
}
// Cell zones
{
const cellZoneMesh& cz = cellZones();
// Go through all the zoned cells and find out if they
// belong to a zone. If so, add it to the zone as
// necessary
List<DynamicList<label>> zoneCells(cz.size());
// Estimate size
forAll(zoneCells, zoneI)
{
zoneCells[zoneI].setCapacity(cz[zoneI].size() / nProcs_);
}
forAll(curCellLabels, celli)
{
label curCelli = curCellLabels[celli];
label zoneI = cellToZone[curCelli];
if (zoneI >= 0)
{
// Single zone.
zoneCells[zoneI].append(celli);
}
else if (zoneI == -2)
{
// Multiple zones. Lookup.
forAll(cz, zoneI)
{
label index = cz[zoneI].whichCell(curCelli);
if (index != -1)
{
zoneCells[zoneI].append(celli);
}
}
}
}
procMesh.cellZones().clearAddressing();
procMesh.cellZones().setSize(zoneCells.size());
forAll(zoneCells, zoneI)
{
procMesh.cellZones().set
(
zoneI,
cz[zoneI].clone
(
zoneCells[zoneI].shrink(),
zoneI,
procMesh.cellZones()
)
);
}
if (cz.size())
{
// Force writing on all processors
procMesh.cellZones().writeOpt() = IOobject::AUTO_WRITE;
}
}
// Set the precision of the points data to be min 10
IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision()));
procMesh.write();
// Write points if pointsInstance differing from facesInstance
if (facesInstancePointsPtr_.valid())
{
pointIOField pointsInstancePoints
(
IOobject
(
"points",
pointsInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
move(procPoints)
);
pointsInstancePoints.write();
}
// Decompose any sets
if (decomposeSets)
{
forAll(cellSets, i)
{
const cellSet& cs = cellSets[i];
cellSet set(procMesh, cs.name(), cs.size()/nProcs_);
forAll(curCellLabels, i)
{
if (cs.found(curCellLabels[i]))
{
set.insert(i);
}
}
set.write();
}
forAll(faceSets, i)
{
const faceSet& cs = faceSets[i];
faceSet set(procMesh, cs.name(), cs.size()/nProcs_);
forAll(curFaceLabels, i)
{
if (cs.found(mag(curFaceLabels[i])-1))
{
set.insert(i);
}
}
set.write();
}
forAll(pointSets, i)
{
const pointSet& cs = pointSets[i];
pointSet set(procMesh, cs.name(), cs.size()/nProcs_);
forAll(curPointLabels, i)
{
if (cs.found(curPointLabels[i]))
{
set.insert(i);
}
}
set.write();
}
}
// Optional hexRef8 data
hexRef8Data
(
IOobject
(
"dummy",
facesInstance(),
polyMesh::meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
baseMeshData,
procCellAddressing_[proci],
procPointAddressing_[proci]
).write();
// Statistics
Info<< endl
<< "Processor " << proci << nl
<< " Number of cells = " << procMesh.nCells()
<< endl;
maxProcCells = max(maxProcCells, procMesh.nCells());
label nBoundaryFaces = 0;
label nProcPatches = 0;
label nProcFaces = 0;
forAll(procMesh.boundaryMesh(), patchi)
{
if (isA<processorPolyPatch>(procMesh.boundaryMesh()[patchi]))
{
const processorPolyPatch& ppp =
refCast<const processorPolyPatch>
(
procMesh.boundaryMesh()[patchi]
);
Info<< " Number of faces shared with processor "
<< ppp.neighbProcNo() << " = " << ppp.size() << endl;
nProcPatches++;
nProcFaces += ppp.size();
}
else
{
nBoundaryFaces += procMesh.boundaryMesh()[patchi].size();
}
}
Info<< " Number of processor patches = " << nProcPatches << nl
<< " Number of processor faces = " << nProcFaces << nl
<< " Number of boundary faces = " << nBoundaryFaces << endl;
totProcFaces += nProcFaces;
totProcPatches += nProcPatches;
maxProcPatches = max(maxProcPatches, nProcPatches);
maxProcFaces = max(maxProcFaces, nProcFaces);
// create and write the addressing information
labelIOList pointProcAddressing
(
IOobject
(
"pointProcAddressing",
procMesh.facesInstance(),
procMesh.meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
procPointAddressing_[proci]
);
pointProcAddressing.write();
labelIOList faceProcAddressing
(
IOobject
(
"faceProcAddressing",
procMesh.facesInstance(),
procMesh.meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
procFaceAddressing_[proci]
);
faceProcAddressing.write();
labelIOList cellProcAddressing
(
IOobject
(
"cellProcAddressing",
procMesh.facesInstance(),
procMesh.meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
procCellAddressing_[proci]
);
cellProcAddressing.write();
// Write patch map for backwards compatibility.
// (= identity map for original patches, -1 for processor patches)
label nMeshPatches = curPatchSizes.size();
labelList procBoundaryAddressing(identity(nMeshPatches));
procBoundaryAddressing.setSize(nMeshPatches+nProcPatches, -1);
labelIOList boundaryProcAddressing
(
IOobject
(
"boundaryProcAddressing",
procMesh.facesInstance(),
procMesh.meshSubDir,
procMesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
procBoundaryAddressing
);
boundaryProcAddressing.write();
}
scalar avgProcCells = scalar(nCells())/nProcs_;
scalar avgProcPatches = scalar(totProcPatches)/nProcs_;
scalar avgProcFaces = scalar(totProcFaces)/nProcs_;
// In case of all faces on one processor. Just to avoid division by 0.
if (totProcPatches == 0)
{
avgProcPatches = 1;
}
if (totProcFaces == 0)
{
avgProcFaces = 1;
}
Info<< nl
<< "Number of processor faces = " << totProcFaces/2 << nl
<< "Max number of cells = " << maxProcCells
<< " (" << 100.0*(maxProcCells-avgProcCells)/avgProcCells
<< "% above average " << avgProcCells << ")" << nl
<< "Max number of processor patches = " << maxProcPatches
<< " (" << 100.0*(maxProcPatches-avgProcPatches)/avgProcPatches
<< "% above average " << avgProcPatches << ")" << nl
<< "Max number of faces between processors = " << maxProcFaces
<< " (" << 100.0*(maxProcFaces-avgProcFaces)/avgProcFaces
<< "% above average " << avgProcFaces << ")" << nl
<< endl;
return true;
}
// ************************************************************************* //