Files
OpenFOAM-12/applications/utilities/preProcessing/wallFunctionTable/tabulatedWallFunction/SpaldingsLaw/SpaldingsLaw.C
Henry Weller fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00

197 lines
5.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "SpaldingsLaw.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace tabulatedWallFunctions
{
defineTypeNameAndDebug(SpaldingsLaw, 0);
addToRunTimeSelectionTable
(
tabulatedWallFunction,
SpaldingsLaw,
dictionary
);
}
}
const Foam::label Foam::tabulatedWallFunctions::SpaldingsLaw::maxIters_ = 1000;
const Foam::scalar
Foam::tabulatedWallFunctions::SpaldingsLaw::tolerance_ = 1e-4;
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
void Foam::tabulatedWallFunctions::SpaldingsLaw::invertFunction()
{
// Initialise u+ and R
scalar Re = 0.0;
scalar uPlus = 1;
// Populate the table
forAll(invertedTable_, i)
{
if (invertedTable_.log10())
{
Re = pow(10, (i*invertedTable_.dx() + invertedTable_.x0()));
}
else
{
Re = i*invertedTable_.dx() + invertedTable_.x0();
}
// Use latest available u+ estimate
if (i > 0)
{
uPlus = invertedTable_[i-1];
}
// Newton iterations to determine u+
label iter = 0;
scalar error = great;
do
{
scalar kUPlus = min(kappa_*uPlus, 50);
scalar A =
E_*sqr(uPlus)
+ uPlus
*(exp(kUPlus) - pow3(kUPlus)/6 - 0.5*sqr(kUPlus) - kUPlus - 1);
scalar f = - Re + A/E_;
scalar df =
(
2*E_*uPlus
+ exp(kUPlus)*(kUPlus + 1)
- 2.0/3.0*pow3(kUPlus)
- 1.5*sqr(kUPlus)
- 2*kUPlus
- 1
)/E_;
scalar uPlusNew = uPlus - f/(df + rootVSmall);
error = mag((uPlus - uPlusNew)/uPlusNew);
uPlus = uPlusNew;
} while (error > tolerance_ && ++iter < maxIters_);
if (iter == maxIters_)
{
WarningInFunction
<< "Newton iterations not converged:" << nl
<< " iters = " << iter << ", error = " << error << endl;
}
// Set new values - constrain u+ >= 0
invertedTable_[i] = max(0, uPlus);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::tabulatedWallFunctions::SpaldingsLaw::SpaldingsLaw
(
const dictionary& dict,
const polyMesh& mesh
)
:
tabulatedWallFunction(dict, mesh, typeName),
kappa_(readScalar(coeffDict_.lookup("kappa"))),
E_(readScalar(coeffDict_.lookup("E")))
{
invertFunction();
if (debug)
{
writeData(Info);
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::tabulatedWallFunctions::SpaldingsLaw::~SpaldingsLaw()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::scalar Foam::tabulatedWallFunctions::SpaldingsLaw::yPlus
(
const scalar uPlus
) const
{
scalar kUPlus = min(kappa_*uPlus, 50);
return
uPlus
+ 1/E_*(exp(kUPlus) - pow3(kUPlus)/6 - 0.5*sqr(kUPlus) - kUPlus - 1);
}
Foam::scalar Foam::tabulatedWallFunctions::SpaldingsLaw::Re
(
const scalar uPlus
) const
{
return uPlus*yPlus(uPlus);
}
void Foam::tabulatedWallFunctions::SpaldingsLaw::writeData(Ostream& os) const
{
if (invertedTable_.log10())
{
os << "log10(Re), y+, u+:" << endl;
forAll(invertedTable_, i)
{
scalar uPlus = invertedTable_[i];
scalar Re = ::log10(this->Re(uPlus));
scalar yPlus = this->yPlus(uPlus);
os << Re << ", " << yPlus << ", " << uPlus << endl;
}
}
else
{
os << "Re, y+, u+:" << endl;
forAll(invertedTable_, i)
{
scalar uPlus = invertedTable_[i];
scalar Re = this->Re(uPlus);
scalar yPlus = this->yPlus(uPlus);
os << Re << ", " << yPlus << ", " << uPlus << endl;
}
}
}
// ************************************************************************* //