Files
OpenFOAM-12/applications/modules/multiphaseEuler/multiphaseThermophysicalTransportModels/HeatTransferPhaseSystem/HeatTransferPhaseSystem.C
Will Bainbridge 4acddc6ab0 solidThermo: Add rhoThermo interface
The old fluid-specific rhoThermo has been split into a non-fluid
specific part which is still called rhoThermo, and a fluid-specific part
called rhoFluidThermo. The rhoThermo interface has been added to the
solidThermo model. This permits models and solvers that access the
density to operate on both solid and fluid thermophysical models.
2023-07-27 09:20:43 +01:00

757 lines
24 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2020-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "HeatTransferPhaseSystem.H"
#include "fvmSup.H"
#include "rhoFluidMulticomponentThermo.H"
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
template<class BasePhaseSystem>
void Foam::HeatTransferPhaseSystem<BasePhaseSystem>::addDmdtHefs
(
const phaseSystem::dmdtfTable& dmdtfs,
phaseSystem::heatTransferTable& eqns
) const
{
// Loop the pairs
forAllConstIter(phaseSystem::dmdtfTable, dmdtfs, dmdtfIter)
{
const phaseInterface interface(*this, dmdtfIter.key());
const volScalarField& dmdtf = *dmdtfIter();
const volScalarField dmdtf21(posPart(dmdtf));
const volScalarField dmdtf12(negPart(dmdtf));
const phaseModel& phase1 = interface.phase1();
const phaseModel& phase2 = interface.phase2();
const rhoFluidThermo& thermo1 = phase1.thermo();
const rhoFluidThermo& thermo2 = phase2.thermo();
const volScalarField& he1 = thermo1.he();
const volScalarField& he2 = thermo2.he();
const volScalarField hs1(thermo1.hs());
const volScalarField hs2(thermo2.hs());
const volScalarField K1(phase1.K());
const volScalarField K2(phase2.K());
// Transfer of sensible enthalpy within the phases
*eqns[phase1.name()] +=
dmdtf*hs1 + fvm::Sp(dmdtf12, he1) - dmdtf12*he1;
*eqns[phase2.name()] -=
dmdtf*hs2 + fvm::Sp(dmdtf21, he2) - dmdtf21*he2;
// Transfer of sensible enthalpy between the phases
*eqns[phase1.name()] += dmdtf21*(hs2 - hs1);
*eqns[phase2.name()] -= dmdtf12*(hs1 - hs2);
// Transfer of kinetic energy
*eqns[phase1.name()] += dmdtf21*K2 + dmdtf12*K1;
*eqns[phase2.name()] -= dmdtf12*K1 + dmdtf21*K2;
}
}
template<class BasePhaseSystem>
void Foam::HeatTransferPhaseSystem<BasePhaseSystem>::addDmidtHefs
(
const phaseSystem::dmidtfTable& dmidtfs,
phaseSystem::heatTransferTable& eqns
) const
{
static const dimensionedScalar one(dimless, 1);
// Loop the pairs
forAllConstIter(phaseSystem::dmidtfTable, dmidtfs, dmidtfIter)
{
const phaseInterface interface(*this, dmidtfIter.key());
const phaseModel& phase1 = interface.phase1();
const phaseModel& phase2 = interface.phase2();
const rhoFluidThermo& thermo1 = phase1.thermo();
const rhoFluidThermo& thermo2 = phase2.thermo();
const rhoFluidMulticomponentThermo* mcThermoPtr1 =
isA<rhoFluidMulticomponentThermo>(thermo1)
? &refCast<const rhoFluidMulticomponentThermo>(thermo1)
: static_cast<const rhoFluidMulticomponentThermo*>(nullptr);
const rhoFluidMulticomponentThermo* mcThermoPtr2 =
isA<rhoFluidMulticomponentThermo>(thermo2)
? &refCast<const rhoFluidMulticomponentThermo>(thermo2)
: static_cast<const rhoFluidMulticomponentThermo*>(nullptr);
const volScalarField& he1 = thermo1.he();
const volScalarField& he2 = thermo2.he();
const volScalarField hs1(thermo1.hs());
const volScalarField hs2(thermo2.hs());
const volScalarField K1(phase1.K());
const volScalarField K2(phase2.K());
// Loop the species
forAllConstIter(HashPtrTable<volScalarField>, *dmidtfIter(), dmidtfJter)
{
const word& specie = dmidtfJter.key();
// Mass transfer rates
const volScalarField& dmidtf = *dmidtfJter();
const volScalarField dmidtf21(posPart(dmidtf));
const volScalarField dmidtf12(negPart(dmidtf));
// Specie indices
const label speciei1 =
mcThermoPtr1 ? mcThermoPtr1->species()[specie] : -1;
const label speciei2 =
mcThermoPtr2 ? mcThermoPtr2->species()[specie] : -1;
// Enthalpies
const volScalarField hsi1
(
mcThermoPtr1
? mcThermoPtr1->hsi(speciei1, thermo1.p(), thermo1.T())
: tmp<volScalarField>(hs1)
);
const volScalarField hsi2
(
mcThermoPtr2
? mcThermoPtr2->hsi(speciei2, thermo2.p(), thermo2.T())
: tmp<volScalarField>(hs2)
);
// Limited mass fractions
tmp<volScalarField> tYi1, tYi2;
if (residualY_ > 0)
{
tYi1 =
mcThermoPtr1
? max(mcThermoPtr1->Y(speciei1), residualY_)
: volScalarField::New("Yi1", this->mesh(), one);
tYi2 =
mcThermoPtr2
? max(mcThermoPtr2->Y(speciei2), residualY_)
: volScalarField::New("Yi2", this->mesh(), one);
}
// Transfer of sensible enthalpy within the phases
*eqns[phase1.name()] += dmidtf*hsi1;
*eqns[phase2.name()] -= dmidtf*hsi2;
if (residualY_ > 0)
{
*eqns[phase1.name()] +=
fvm::Sp(dmidtf12/tYi1(), he1) - dmidtf12/tYi1()*he1;
*eqns[phase2.name()] -=
fvm::Sp(dmidtf21/tYi2(), he2) - dmidtf21/tYi2()*he2;
}
// Transfer of sensible enthalpy between the phases
*eqns[phase1.name()] += dmidtf21*(hsi2 - hsi1);
*eqns[phase2.name()] -= dmidtf12*(hsi1 - hsi2);
// Transfer of kinetic energy
*eqns[phase1.name()] += dmidtf21*K2 + dmidtf12*K1;
*eqns[phase2.name()] -= dmidtf12*K1 + dmidtf21*K2;
}
}
}
template<class BasePhaseSystem>
void Foam::HeatTransferPhaseSystem<BasePhaseSystem>::addDmdtHefsWithoutL
(
const phaseSystem::dmdtfTable& dmdtfs,
const phaseSystem::dmdtfTable& Tfs,
const latentHeatScheme scheme,
phaseSystem::heatTransferTable& eqns
) const
{
// Loop the pairs
forAllConstIter(phaseSystem::dmdtfTable, dmdtfs, dmdtfIter)
{
const phaseInterface interface(*this, dmdtfIter.key());
const volScalarField& dmdtf = *dmdtfIter();
const volScalarField dmdtf21(posPart(dmdtf));
const volScalarField dmdtf12(negPart(dmdtf));
const volScalarField& Tf = *Tfs[dmdtfIter.key()];
const phaseModel& phase1 = interface.phase1();
const phaseModel& phase2 = interface.phase2();
const rhoFluidThermo& thermo1 = phase1.thermo();
const rhoFluidThermo& thermo2 = phase2.thermo();
const volScalarField& he1 = thermo1.he();
const volScalarField& he2 = thermo2.he();
const volScalarField K1(phase1.K());
const volScalarField K2(phase2.K());
// Interface enthalpies
const volScalarField hsf1(thermo1.hs(thermo1.p(), Tf));
const volScalarField hsf2(thermo2.hs(thermo1.p(), Tf));
// Transfer of energy from the interface into the bulk
switch (scheme)
{
case latentHeatScheme::symmetric:
{
*eqns[phase1.name()] += dmdtf*hsf1;
*eqns[phase2.name()] -= dmdtf*hsf2;
break;
}
case latentHeatScheme::upwind:
{
// Bulk enthalpies
const volScalarField hs1(thermo1.hs());
const volScalarField hs2(thermo2.hs());
*eqns[phase1.name()] += dmdtf21*hsf1 + dmdtf12*hs1;
*eqns[phase2.name()] -= dmdtf12*hsf2 + dmdtf21*hs2;
break;
}
}
*eqns[phase1.name()] += fvm::Sp(dmdtf12, he1) - dmdtf12*he1;
*eqns[phase2.name()] -= fvm::Sp(dmdtf21, he2) - dmdtf21*he2;
// Transfer of kinetic energy
*eqns[phase1.name()] += dmdtf21*K2 + dmdtf12*K1;
*eqns[phase2.name()] -= dmdtf12*K1 + dmdtf21*K2;
}
}
template<class BasePhaseSystem>
void Foam::HeatTransferPhaseSystem<BasePhaseSystem>::addDmdtL
(
const phaseSystem::dmdtfTable& dmdtfs,
const phaseSystem::dmdtfTable& Tfs,
const scalar weight,
const latentHeatScheme scheme,
phaseSystem::heatTransferTable& eqns
) const
{
// Loop the pairs
forAllConstIter(phaseSystem::dmdtfTable, dmdtfs, dmdtfIter)
{
const phaseInterface interface(*this, dmdtfIter.key());
const volScalarField& dmdtf = *dmdtfIter();
const volScalarField dmdtf21(posPart(dmdtf));
const volScalarField dmdtf12(negPart(dmdtf));
const volScalarField& Tf = *Tfs[dmdtfIter.key()];
const phaseModel& phase1 = interface.phase1();
const phaseModel& phase2 = interface.phase2();
// Latent heat contribution
const volScalarField L(this->L(interface, dmdtf, Tf, scheme));
*eqns[phase1.name()] += ((1 - weight)*dmdtf12 + weight*dmdtf21)*L;
*eqns[phase2.name()] += ((1 - weight)*dmdtf21 + weight*dmdtf12)*L;
}
}
template<class BasePhaseSystem>
void Foam::HeatTransferPhaseSystem<BasePhaseSystem>::addDmdtHefs
(
const phaseSystem::dmdtfTable& dmdtfs,
const phaseSystem::dmdtfTable& Tfs,
const scalar weight,
const latentHeatScheme scheme,
phaseSystem::heatTransferTable& eqns
) const
{
addDmdtHefsWithoutL(dmdtfs, Tfs, scheme, eqns);
addDmdtL(dmdtfs, Tfs, weight, scheme, eqns);
}
template<class BasePhaseSystem>
void Foam::HeatTransferPhaseSystem<BasePhaseSystem>::addDmidtHefsWithoutL
(
const phaseSystem::dmidtfTable& dmidtfs,
const phaseSystem::dmdtfTable& Tfs,
const latentHeatScheme scheme,
phaseSystem::heatTransferTable& eqns
) const
{
static const dimensionedScalar one(dimless, 1);
// Loop the pairs
forAllConstIter(phaseSystem::dmidtfTable, dmidtfs, dmidtfIter)
{
const phaseInterface interface(*this, dmidtfIter.key());
const volScalarField& Tf = *Tfs[dmidtfIter.key()];
const phaseModel& phase1 = interface.phase1();
const phaseModel& phase2 = interface.phase2();
const rhoFluidThermo& thermo1 = phase1.thermo();
const rhoFluidThermo& thermo2 = phase2.thermo();
const rhoFluidMulticomponentThermo* mcThermoPtr1 =
isA<rhoFluidMulticomponentThermo>(thermo1)
? &refCast<const rhoFluidMulticomponentThermo>(thermo1)
: static_cast<const rhoFluidMulticomponentThermo*>(nullptr);
const rhoFluidMulticomponentThermo* mcThermoPtr2 =
isA<rhoFluidMulticomponentThermo>(thermo2)
? &refCast<const rhoFluidMulticomponentThermo>(thermo2)
: static_cast<const rhoFluidMulticomponentThermo*>(nullptr);
const volScalarField& he1 = thermo1.he();
const volScalarField& he2 = thermo2.he();
const volScalarField K1(phase1.K());
const volScalarField K2(phase2.K());
// Interface enthalpies
const volScalarField hsf1(thermo1.hs(thermo1.p(), Tf));
const volScalarField hsf2(thermo2.hs(thermo2.p(), Tf));
// Loop the species
forAllConstIter(HashPtrTable<volScalarField>, *dmidtfIter(), dmidtfJter)
{
const word& specie = dmidtfJter.key();
// Mass transfer rates
const volScalarField& dmidtf = *dmidtfJter();
const volScalarField dmidtf21(posPart(dmidtf));
const volScalarField dmidtf12(negPart(dmidtf));
// Specie indices
const label speciei1 =
mcThermoPtr1 ? mcThermoPtr1->species()[specie] : -1;
const label speciei2 =
mcThermoPtr2 ? mcThermoPtr2->species()[specie] : -1;
// Interface enthalpies
const volScalarField hsfi1
(
mcThermoPtr1
? mcThermoPtr1->hsi(speciei1, thermo1.p(), Tf)
: tmp<volScalarField>(hsf1)
);
const volScalarField hsfi2
(
mcThermoPtr2
? mcThermoPtr2->hsi(speciei2, thermo2.p(), Tf)
: tmp<volScalarField>(hsf2)
);
// Limited mass fractions
tmp<volScalarField> tYi1, tYi2;
if (this->residualY_ > 0)
{
tYi1 =
mcThermoPtr1
? max(mcThermoPtr1->Y(speciei1), this->residualY_)
: volScalarField::New("Yi1", this->mesh(), one);
tYi2 =
mcThermoPtr2
? max(mcThermoPtr2->Y(speciei2), this->residualY_)
: volScalarField::New("Yi2", this->mesh(), one);
}
// Transfer of energy from the interface into the bulk
switch (scheme)
{
case latentHeatScheme::symmetric:
{
*eqns[phase1.name()] += dmidtf*hsfi1;
*eqns[phase2.name()] -= dmidtf*hsfi2;
break;
}
case latentHeatScheme::upwind:
{
// Bulk enthalpies
const volScalarField hsi1
(
mcThermoPtr1
? mcThermoPtr1->hsi(speciei1, thermo1.p(), thermo1.T())
: thermo1.hs()
);
const volScalarField hsi2
(
mcThermoPtr2
? mcThermoPtr2->hsi(speciei2, thermo2.p(), thermo2.T())
: thermo2.hs()
);
*eqns[phase1.name()] += dmidtf21*hsfi1 + dmidtf12*hsi1;
*eqns[phase2.name()] -= dmidtf12*hsfi2 + dmidtf21*hsi2;
break;
}
}
if (this->residualY_ > 0)
{
*eqns[phase1.name()] +=
fvm::Sp(dmidtf12/tYi1(), he1) - dmidtf12/tYi1()*he1;
}
if (this->residualY_ > 0)
{
*eqns[phase2.name()] -=
fvm::Sp(dmidtf21/tYi2(), he2) - dmidtf21/tYi2()*he2;
}
// Transfer of kinetic energy
*eqns[phase1.name()] += dmidtf21*K2 + dmidtf12*K1;
*eqns[phase2.name()] -= dmidtf12*K1 + dmidtf21*K2;
}
}
}
template<class BasePhaseSystem>
void Foam::HeatTransferPhaseSystem<BasePhaseSystem>::addDmidtL
(
const phaseSystem::dmidtfTable& dmidtfs,
const phaseSystem::dmdtfTable& Tfs,
const scalar weight,
const latentHeatScheme scheme,
phaseSystem::heatTransferTable& eqns
) const
{
// Loop the pairs
forAllConstIter(phaseSystem::dmidtfTable, dmidtfs, dmidtfIter)
{
const phaseInterface interface(*this, dmidtfIter.key());
const volScalarField& Tf = *Tfs[dmidtfIter.key()];
const phaseModel& phase1 = interface.phase1();
const phaseModel& phase2 = interface.phase2();
// Loop the species
forAllConstIter(HashPtrTable<volScalarField>, *dmidtfIter(), dmidtfJter)
{
const word& specie = dmidtfJter.key();
// Mass transfer rates
const volScalarField& dmidtf = *dmidtfJter();
const volScalarField dmidtf21(posPart(dmidtf));
const volScalarField dmidtf12(negPart(dmidtf));
// Latent heat contribution
const volScalarField Li
(
this->Li(interface, specie, dmidtf, Tf, scheme)
);
*eqns[phase1.name()] +=
((1 - weight)*dmidtf12 + weight*dmidtf21)*Li;
*eqns[phase2.name()] +=
((1 - weight)*dmidtf21 + weight*dmidtf12)*Li;
}
}
}
template<class BasePhaseSystem>
void Foam::HeatTransferPhaseSystem<BasePhaseSystem>::addDmidtHefs
(
const phaseSystem::dmidtfTable& dmidtfs,
const phaseSystem::dmdtfTable& Tfs,
const scalar weight,
const latentHeatScheme scheme,
phaseSystem::heatTransferTable& eqns
) const
{
addDmidtHefsWithoutL(dmidtfs, Tfs, scheme, eqns);
addDmidtL(dmidtfs, Tfs, weight, scheme, eqns);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class BasePhaseSystem>
Foam::HeatTransferPhaseSystem<BasePhaseSystem>::HeatTransferPhaseSystem
(
const fvMesh& mesh
)
:
heatTransferPhaseSystem(),
BasePhaseSystem(mesh),
residualY_(this->template lookupOrDefault<scalar>("residualY", -1))
{}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class BasePhaseSystem>
Foam::HeatTransferPhaseSystem<BasePhaseSystem>::~HeatTransferPhaseSystem()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
template<class BasePhaseSystem>
Foam::tmp<Foam::volScalarField>
Foam::HeatTransferPhaseSystem<BasePhaseSystem>::L
(
const phaseInterface& interface,
const volScalarField& dmdtf,
const volScalarField& Tf,
const latentHeatScheme scheme
) const
{
const rhoFluidThermo& thermo1 = interface.phase1().thermo();
const rhoFluidThermo& thermo2 = interface.phase2().thermo();
// Interface enthalpies
const volScalarField haf1(thermo1.ha(thermo1.p(), Tf));
const volScalarField haf2(thermo2.ha(thermo2.p(), Tf));
switch (scheme)
{
case latentHeatScheme::symmetric:
{
return haf2 - haf1;
}
case latentHeatScheme::upwind:
{
// Bulk enthalpies
const volScalarField ha1(thermo1.ha());
const volScalarField ha2(thermo2.ha());
return
neg0(dmdtf)*haf2 + pos(dmdtf)*ha2
- pos0(dmdtf)*haf1 - neg(dmdtf)*ha1;
}
}
return tmp<volScalarField>(nullptr);
}
template<class BasePhaseSystem>
Foam::tmp<Foam::scalarField>
Foam::HeatTransferPhaseSystem<BasePhaseSystem>::L
(
const phaseInterface& interface,
const scalarField& dmdtf,
const scalarField& Tf,
const labelUList& cells,
const latentHeatScheme scheme
) const
{
const rhoFluidThermo& thermo1 = interface.phase1().thermo();
const rhoFluidThermo& thermo2 = interface.phase2().thermo();
// Interface enthalpies
const scalarField haf1(thermo1.ha(Tf, cells));
const scalarField haf2(thermo2.ha(Tf, cells));
switch (scheme)
{
case latentHeatScheme::symmetric:
{
return haf2 - haf1;
}
case latentHeatScheme::upwind:
{
const scalarField T1(UIndirectList<scalar>(thermo1.T(), cells));
const scalarField T2(UIndirectList<scalar>(thermo2.T(), cells));
// Bulk enthalpies
const scalarField ha1(thermo1.ha(T1, cells));
const scalarField ha2(thermo2.ha(T2, cells));
return
neg0(dmdtf)*haf2 + pos(dmdtf)*ha2
- pos0(dmdtf)*haf1 - neg(dmdtf)*ha1;
}
}
return tmp<scalarField>(nullptr);
}
template<class BasePhaseSystem>
Foam::tmp<Foam::volScalarField>
Foam::HeatTransferPhaseSystem<BasePhaseSystem>::Li
(
const phaseInterface& interface,
const word& specie,
const volScalarField& dmdtf,
const volScalarField& Tf,
const latentHeatScheme scheme
) const
{
const rhoFluidThermo& thermo1 = interface.phase1().thermo();
const rhoFluidThermo& thermo2 = interface.phase2().thermo();
const rhoFluidMulticomponentThermo* mcThermoPtr1 =
isA<rhoFluidMulticomponentThermo>(thermo1)
? &refCast<const rhoFluidMulticomponentThermo>(thermo1)
: static_cast<const rhoFluidMulticomponentThermo*>(nullptr);
const rhoFluidMulticomponentThermo* mcThermoPtr2 =
isA<rhoFluidMulticomponentThermo>(thermo2)
? &refCast<const rhoFluidMulticomponentThermo>(thermo2)
: static_cast<const rhoFluidMulticomponentThermo*>(nullptr);
const label speciei1 =
mcThermoPtr1 ? mcThermoPtr1->species()[specie] : -1;
const label speciei2 =
mcThermoPtr2 ? mcThermoPtr2->species()[specie] : -1;
// Interface enthalpies
const volScalarField hafi1
(
mcThermoPtr1
? mcThermoPtr1->hai(speciei1, thermo1.p(), Tf)
: thermo1.ha(thermo1.p(), Tf)
);
const volScalarField hafi2
(
mcThermoPtr2
? mcThermoPtr2->hai(speciei2, thermo2.p(), Tf)
: thermo2.ha(thermo1.p(), Tf)
);
switch (scheme)
{
case latentHeatScheme::symmetric:
{
return hafi2 - hafi1;
}
case latentHeatScheme::upwind:
{
// Bulk enthalpies
const volScalarField hai1
(
mcThermoPtr1
? mcThermoPtr1->hai(speciei1, thermo1.p(), thermo1.T())
: thermo1.ha()
);
const volScalarField hai2
(
mcThermoPtr2
? mcThermoPtr2->hai(speciei2, thermo2.p(), thermo2.T())
: thermo2.ha()
);
return
neg0(dmdtf)*hafi2 + pos(dmdtf)*hai2
- pos0(dmdtf)*hafi1 - neg(dmdtf)*hai1;
}
}
return tmp<volScalarField>(nullptr);
}
template<class BasePhaseSystem>
Foam::tmp<Foam::scalarField>
Foam::HeatTransferPhaseSystem<BasePhaseSystem>::Li
(
const phaseInterface& interface,
const word& specie,
const scalarField& dmdtf,
const scalarField& Tf,
const labelUList& cells,
const latentHeatScheme scheme
) const
{
const rhoFluidThermo& thermo1 = interface.phase1().thermo();
const rhoFluidThermo& thermo2 = interface.phase2().thermo();
const rhoFluidMulticomponentThermo* mcThermoPtr1 =
isA<rhoFluidMulticomponentThermo>(thermo1)
? &refCast<const rhoFluidMulticomponentThermo>(thermo1)
: static_cast<const rhoFluidMulticomponentThermo*>(nullptr);
const rhoFluidMulticomponentThermo* mcThermoPtr2 =
isA<rhoFluidMulticomponentThermo>(thermo2)
? &refCast<const rhoFluidMulticomponentThermo>(thermo2)
: static_cast<const rhoFluidMulticomponentThermo*>(nullptr);
const label speciei1 =
mcThermoPtr1 ? mcThermoPtr1->species()[specie] : -1;
const label speciei2 =
mcThermoPtr2 ? mcThermoPtr2->species()[specie] : -1;
const scalarField p1(UIndirectList<scalar>(thermo1.p(), cells));
const scalarField p2(UIndirectList<scalar>(thermo2.p(), cells));
// Interface enthalpies
const scalarField hafi1
(
mcThermoPtr1
? mcThermoPtr1->hai(speciei1, p1, Tf)
: thermo1.ha(Tf, cells)
);
const scalarField hafi2
(
mcThermoPtr2
? mcThermoPtr2->hai(speciei2, p2, Tf)
: thermo2.ha(Tf, cells)
);
switch (scheme)
{
case latentHeatScheme::symmetric:
{
return hafi2 - hafi1;
}
case latentHeatScheme::upwind:
{
const scalarField T1(UIndirectList<scalar>(thermo1.T(), cells));
const scalarField T2(UIndirectList<scalar>(thermo2.T(), cells));
// Bulk enthalpies
const scalarField hai1
(
mcThermoPtr1
? mcThermoPtr1->hai(speciei1, p1, T1)
: thermo1.ha(T1, cells)
);
const scalarField hai2
(
mcThermoPtr2
? mcThermoPtr2->hai(speciei2, p2, T2)
: thermo2.ha(T2, cells)
);
return
neg0(dmdtf)*hafi2 + pos(dmdtf)*hai2
- pos0(dmdtf)*hafi1 - neg(dmdtf)*hai1;
}
}
return tmp<scalarField>(nullptr);
}
template<class BasePhaseSystem>
bool Foam::HeatTransferPhaseSystem<BasePhaseSystem>::read()
{
if (BasePhaseSystem::read())
{
bool readOK = true;
// Models ...
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //