Files
OpenFOAM-12/applications/modules/incompressibleDenseParticleFluid/incompressibleDenseParticleFluid.C
Henry Weller 8a1dd2eb9a solver modules: Moved constructing the face velocity/momentum into preSolve()
The velocity boundary conditions are corrected before the construction of the
face velocity or momentum but for multi-region cases with interacting velocity
boundary conditions this is only possible after all the region solver modules
have been constructed so it is better to delay the optional construction of the
face velocity/momentum until preSolve().
2023-05-30 14:59:58 +01:00

389 lines
8.6 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "incompressibleDenseParticleFluid.H"
#include "surfaceInterpolate.H"
#include "fvMatrix.H"
#include "fvcFlux.H"
#include "zeroGradientFvPatchFields.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace solvers
{
defineTypeNameAndDebug(incompressibleDenseParticleFluid, 0);
addToRunTimeSelectionTable
(
solver,
incompressibleDenseParticleFluid,
fvMesh
);
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::solvers::incompressibleDenseParticleFluid::correctCoNum()
{
fluidSolver::correctCoNum(phic);
}
void Foam::solvers::incompressibleDenseParticleFluid::continuityErrors()
{
fluidSolver::continuityErrors(phic);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::solvers::incompressibleDenseParticleFluid::
incompressibleDenseParticleFluid
(
fvMesh& mesh
)
:
fluidSolver(mesh),
continuousPhaseName
(
IOdictionary
(
IOobject
(
"physicalProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ
)
).lookup("continuousPhaseName")
),
p_
(
IOobject
(
"p",
runTime.name(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
),
pressureReference(p_, pimple.dict()),
g
(
IOobject
(
"g",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
),
Uc_
(
IOobject
(
IOobject::groupName("U", continuousPhaseName),
runTime.name(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
),
phic_
(
IOobject
(
IOobject::groupName("phi", continuousPhaseName),
runTime.name(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(Uc_) & mesh.Sf()
),
viscosity(viscosityModel::New(mesh)),
rhoc
(
IOobject
(
IOobject::groupName("rho", continuousPhaseName),
runTime.name(),
mesh
),
mesh,
dimensionedScalar
(
IOobject::groupName("rho", continuousPhaseName),
dimDensity,
viscosity->lookup
(
IOobject::groupName("rho", continuousPhaseName)
)
)
),
muc
(
IOobject
(
IOobject::groupName("mu", continuousPhaseName),
runTime.name(),
mesh
),
rhoc*viscosity->nu()
),
alphac_
(
IOobject
(
IOobject::groupName("alpha", continuousPhaseName),
runTime.name(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless, 0)
),
alphacMin
(
1 - mesh.solution().solverDict(alphac_.name()).lookup<scalar>("max")
),
alphacf("alphacf", fvc::interpolate(alphac_)),
alphaPhic
(
IOobject::groupName("alphaPhi", continuousPhaseName),
alphacf*phic_
),
momentumTransport
(
phaseIncompressible::momentumTransportModel::New
(
alphac_,
Uc_,
alphaPhic,
phic_,
viscosity
)
),
clouds
(
parcelClouds::New(mesh, rhoc, Uc_, muc, g)
),
p(p_),
Uc(Uc_),
phic(phic_),
alphac(alphac_)
{
mesh.schemes().setFluxRequired(p.name());
momentumTransport->validate();
// Update alphac from the particle locations
alphac_ = max(1 - clouds.theta(), alphacMin);
alphac_.correctBoundaryConditions();
alphacf = fvc::interpolate(alphac);
alphaPhic = alphacf*phic;
correctCoNum();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::solvers::incompressibleDenseParticleFluid::
~incompressibleDenseParticleFluid()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::solvers::incompressibleDenseParticleFluid::preSolve()
{
// Read the controls
readControls();
if (mesh.dynamic() && !Ucf.valid())
{
Info<< "Constructing face momentum Ucf" << endl;
// Ensure the U BCs are up-to-date before constructing Ucf
Uc_.correctBoundaryConditions();
Ucf = new surfaceVectorField
(
IOobject
(
"Ucf",
runTime.name(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
fvc::interpolate(Uc)
);
}
// Store the particle positions
if (mesh.topoChanging())
{
clouds.storeGlobalPositions();
}
fvModels().preUpdateMesh();
correctCoNum();
// Update the mesh for topology change, mesh to mesh mapping
mesh_.update();
}
void Foam::solvers::incompressibleDenseParticleFluid::prePredictor()
{
if (pimple.firstIter())
{
clouds.evolve();
// Update continuous phase volume fraction field
alphac_ = max(1 - clouds.theta(), alphacMin);
alphac_.correctBoundaryConditions();
alphacf = fvc::interpolate(alphac);
// ... and continuous phase volumetric flux
alphaPhic = alphacf*phic;
// Update the continuous phase dynamic viscosity
muc = rhoc*viscosity->nu();
Fd = new volVectorField
(
IOobject
(
"Fd",
runTime.name(),
mesh
),
mesh,
dimensionedVector(dimAcceleration, Zero),
zeroGradientFvPatchVectorField::typeName
);
Dc = new volScalarField
(
IOobject
(
"Dc",
runTime.name(),
mesh
),
mesh,
dimensionedScalar(dimless/dimTime, Zero),
zeroGradientFvPatchVectorField::typeName
);
const fvVectorMatrix cloudSU(clouds.SU(Uc));
Fd().primitiveFieldRef() = -cloudSU.source()/mesh.V()/rhoc;
Fd().correctBoundaryConditions();
Dc().primitiveFieldRef() = -cloudSU.diag()/mesh.V()/rhoc;
Dc().correctBoundaryConditions();
Dcf = fvc::interpolate(Dc()).ptr();
phid =
(
fvc::flux(Fd())
/(Dcf() + dimensionedScalar(Dc().dimensions(), small))
).ptr();
}
if (pimple.predictTransport())
{
momentumTransport->predict();
}
}
void Foam::solvers::incompressibleDenseParticleFluid::thermophysicalPredictor()
{}
void Foam::solvers::incompressibleDenseParticleFluid::pressureCorrector()
{
while (pimple.correct())
{
correctPressure();
}
tUcEqn.clear();
}
void Foam::solvers::incompressibleDenseParticleFluid::postCorrector()
{
if (pimple.correctTransport())
{
viscosity->correct();
momentumTransport->correct();
}
}
void Foam::solvers::incompressibleDenseParticleFluid::postSolve()
{
Fd.clear();
Dc.clear();
Dcf.clear();
phid.clear();
}
// ************************************************************************* //