Files
OpenFOAM-12/applications/test/PatchTools/Test-PatchTools.C
Henry Weller fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00

298 lines
8.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
testPatchTools
Description
Test app for PatchTools functionality
\*---------------------------------------------------------------------------*/
#include "PatchTools.H"
#include "argList.H"
#include "fvMesh.H"
#include "volFields.H"
#include "Time.H"
#include "OBJstream.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
//template<class PatchType>
//Foam::tmp<Foam::pointField>
//areaPointNormals
//(
// const polyMesh& mesh,
// const PatchType& p,
// const labelList& meshFaces
//)
//{
// // Assume patch is smaller than the globalData().coupledPatch() (?) so
// // loop over patch meshPoints.
//
// const labelList& meshPoints = p.meshPoints();
//
// const globalMeshData& globalData = mesh.globalData();
// const indirectPrimitivePatch& coupledPatch = globalData.coupledPatch();
// const Map<label>& coupledPatchMP = coupledPatch.meshPointMap();
// const mapDistribute& map = globalData.globalPointSlavesMap();
// const globalIndexAndTransform& transforms =
// globalData.globalTransforms();
//
//
// // 1. Start off with local (area-weighted) normals
// // (note:without calculating pointNormals
// // to avoid them being stored)
//
// tmp<pointField> textrudeN(new pointField(p.nPoints(), Zero));
// pointField& extrudeN = textrudeN();
// {
// const faceList& localFaces = p.localFaces();
// const vectorField& faceAreas = mesh.faceAreas();
//
// forAll(localFaces, facei)
// {
// const face& f = localFaces[facei];
// const vector& n = faceAreas[meshFaces[facei]];
// forAll(f, fp)
// {
// extrudeN[f[fp]] += n;
// }
// }
// }
//
//
// // Collect local pointFaces
// List<List<point>> pointFaceNormals(map.constructSize());
// {
// const vectorField& faceAreas = mesh.faceAreas();
//
// forAll(meshPoints, patchPointi)
// {
// label meshPointi = meshPoints[patchPointi];
// Map<label>::const_iterator fnd = coupledPatchMP.find(meshPointi);
// if (fnd != coupledPatchMP.end())
// {
// label coupledPointi = fnd();
//
// List<point>& pNormals = pointFaceNormals[coupledPointi];
// const labelList& pFaces = p.pointFaces()[patchPointi];
// pNormals.setSize(pFaces.size());
// forAll(pFaces, i)
// {
// pNormals[i] = faceAreas[meshFaces[pFaces[i]]];
// }
// }
// }
// }
//
// // Pull remote data into local slots
// map.distribute
// (
// transforms,
// pointFaceNormals,
// listTransform()
// );
//
//
// // Combine normals
// const labelListList& slaves = globalData.globalPointSlaves();
// const labelListList& transformedSlaves =
// globalData.globalPointTransformedSlaves();
//
//
// pointField coupledPointNormals(map.constructSize(), Zero);
//
// forAll(meshPoints, patchPointi)
// {
// label meshPointi = meshPoints[patchPointi];
// Map<label>::const_iterator fnd = coupledPatchMP.find(meshPointi);
// if (fnd != coupledPatchMP.end())
// {
// label coupledPointi = fnd();
// const labelList& slaveSlots = slaves[coupledPointi];
// const labelList& transformedSlaveSlots =
// transformedSlaves[coupledPointi];
//
// label nFaces = slaveSlots.size()+transformedSlaveSlots.size();
// if (nFaces > 0)
// {
// // Combine
// point& n = coupledPointNormals[coupledPointi];
//
// n += sum(pointFaceNormals[coupledPointi]);
//
// forAll(slaveSlots, i)
// {
// n += sum(pointFaceNormals[slaveSlots[i]]);
// }
// forAll(transformedSlaveSlots, i)
// {
// n += sum(pointFaceNormals[transformedSlaveSlots[i]]);
// }
//
// // Put back into slave slots
// forAll(slaveSlots, i)
// {
// coupledPointNormals[slaveSlots[i]] = n;
// }
// forAll(transformedSlaveSlots, i)
// {
// coupledPointNormals[transformedSlaveSlots[i]] = n;
// }
// }
// }
// }
//
//
// // Send back
// map.reverseDistribute
// (
// transforms,
// coupledPointNormals.size(),
// coupledPointNormals,
// mapDistribute::transform()
// );
//
//
// // Override patch normals
// forAll(meshPoints, patchPointi)
// {
// label meshPointi = meshPoints[patchPointi];
// Map<label>::const_iterator fnd = coupledPatchMP.find(meshPointi);
// if (fnd != coupledPatchMP.end())
// {
// label coupledPointi = fnd();
// extrudeN[patchPointi] = coupledPointNormals[coupledPointi];
// }
// }
//
// extrudeN /= mag(extrudeN)+vSmall;
//
// return textrudeN;
//}
// Main program:
int main(int argc, char *argv[])
{
#include "addTimeOptions.H"
argList::validArgs.append("patch");
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
const word patchName = args[1];
label patchi = mesh.boundaryMesh().findPatchID(patchName);
const polyPatch& pp = mesh.boundaryMesh()[patchi];
const indirectPrimitivePatch& cpp = mesh.globalData().coupledPatch();
{
OBJstream str(runTime.path()/"edgePatchNormals.obj");
labelList patchEdges;
labelList coupledEdges;
PackedBoolList sameEdgeOrientation;
PatchTools::matchEdges
(
pp,
cpp,
patchEdges,
coupledEdges,
sameEdgeOrientation
);
const pointField en
(
PatchTools::edgeNormals
(
mesh,
pp,
patchEdges,
coupledEdges
)
);
forAll(en, patchEdgeI)
{
const edge& patchE = pp.edges()[patchEdgeI];
//str.write(pp.localPoints()[pointi], en[pointi]);
const point pt = patchE.centre(pp.localPoints());
str.write(linePointRef(pt, pt + 0.1*en[patchEdgeI]));
}
}
return 0;
// {
// OBJstream str(runTime.path()/"unweightedPatchNormals.obj");
//
// const pointField pn
// (
// PatchTools::pointNormals
// (
// mesh,
// pp,
// identity(pp.size())+pp.start()
// )
// );
// forAll(pn, pointi)
// {
// str.write(linePointRef(pp.localPoints()[pointi], pn[pointi]));
// }
// }
// {
// OBJstream str(runTime.path()/"areaWeightedPatchNormals.obj");
//
// const pointField pn
// (
// areaPointNormals
// (
// mesh,
// pp,
// identity(pp.size())+pp.start()
// )
// );
// forAll(pn, pointi)
// {
// str.write(linePointRef(pp.localPoints()[pointi], pn[pointi]));
// }
// }
Pout<< "End\n" << endl;
return 0;
}
// ************************************************************************* //