Files
Will Bainbridge 597121a4a7 multiphaseEuler: Library reorganisation
This change makes multiphaseEuler more consistent with other modules and
makes its sub-libraries less inter-dependent. Some left-over references
to multiphaseEulerFoam have also been removed.
2023-09-15 14:45:26 +01:00

287 lines
7.0 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2015-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "nonRandomTwoLiquid.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace interfaceCompositionModels
{
defineTypeNameAndDebug(nonRandomTwoLiquid, 0);
addToRunTimeSelectionTable
(
interfaceCompositionModel,
nonRandomTwoLiquid,
dictionary
);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::interfaceCompositionModels::nonRandomTwoLiquid::nonRandomTwoLiquid
(
const dictionary& dict,
const phaseInterface& interface
)
:
interfaceCompositionModel(dict, interface),
gamma1_
(
IOobject
(
IOobject::groupName("gamma1", this->interface().name()),
interface.mesh().time().name(),
interface.mesh()
),
interface.mesh(),
dimensionedScalar(dimless, 1)
),
gamma2_
(
IOobject
(
IOobject::groupName("gamma2", this->interface().name()),
interface.mesh().time().name(),
interface.mesh()
),
interface.mesh(),
dimensionedScalar(dimless, 1)
),
beta12_("", dimless/dimTemperature, 0),
beta21_("", dimless/dimTemperature, 0)
{
if (species().size() != 2)
{
FatalErrorInFunction
<< "nonRandomTwoLiquid model is suitable for two species only."
<< exit(FatalError);
}
species1Name_ = species()[0];
species2Name_ = species()[1];
species1Index_ = thermo().species()[species1Name_];
species2Index_ = thermo().species()[species2Name_];
alpha12_ = dimensionedScalar
(
"alpha12",
dimless,
dict.subDict(species1Name_).lookup("alpha")
);
alpha21_ = dimensionedScalar
(
"alpha21",
dimless,
dict.subDict(species2Name_).lookup("alpha")
);
beta12_ = dimensionedScalar
(
"beta12",
dimless/dimTemperature,
dict.subDict(species1Name_).lookup("beta")
);
beta21_ = dimensionedScalar
(
"beta21",
dimless/dimTemperature,
dict.subDict(species2Name_).lookup("beta")
);
saturationModel12_.reset
(
saturationPressureModel::New
(
"interaction",
dict.subDict(species1Name_)
).ptr()
);
saturationModel21_.reset
(
saturationPressureModel::New
(
"interaction",
dict.subDict(species2Name_)
).ptr()
);
speciesModel1_.reset
(
interfaceCompositionModel::New
(
dict.subDict(species1Name_),
interface,
false
).ptr()
);
speciesModel2_.reset
(
interfaceCompositionModel::New
(
dict.subDict(species2Name_),
interface,
false
).ptr()
);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::interfaceCompositionModels::nonRandomTwoLiquid::~nonRandomTwoLiquid()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::interfaceCompositionModels::nonRandomTwoLiquid::update
(
const volScalarField& Tf
)
{
const volScalarField W(thermo().W());
const volScalarField X1
(
thermo().Y(species1Index_)
*W
/dimensionedScalar
(
"W",
dimMass/dimMoles,
thermo().Wi(species1Index_)
)
);
const volScalarField X2
(
thermo().Y(species2Index_)
*W
/dimensionedScalar
(
"W",
dimMass/dimMoles,
thermo().Wi(species2Index_)
)
);
const volScalarField alpha12(alpha12_ + Tf*beta12_);
const volScalarField alpha21(alpha21_ + Tf*beta21_);
const volScalarField tau12(saturationModel12_->lnPSat(Tf));
const volScalarField tau21(saturationModel21_->lnPSat(Tf));
const volScalarField G12(exp(- alpha12*tau12));
const volScalarField G21(exp(- alpha21*tau21));
gamma1_ =
exp
(
sqr(X2)
*(
tau21*sqr(G21)/max(sqr(X1 + X2*G21), small)
+ tau12*G12/max(sqr(X2 + X1*G12), small)
)
);
gamma2_ =
exp
(
sqr(X1)
*(
tau12*sqr(G12)/max(sqr(X2 + X1*G12), small)
+ tau21*G21/max(sqr(X1 + X2*G21), small)
)
);
}
Foam::tmp<Foam::volScalarField>
Foam::interfaceCompositionModels::nonRandomTwoLiquid::Yf
(
const word& speciesName,
const volScalarField& Tf
) const
{
if (speciesName == species1Name_)
{
return
otherMulticomponentThermo().Y(speciesName)
*speciesModel1_->Yf(speciesName, Tf)
*gamma1_;
}
else if (speciesName == species2Name_)
{
return
otherMulticomponentThermo().Y(speciesName)
*speciesModel2_->Yf(speciesName, Tf)
*gamma2_;
}
else
{
return
thermo().Y(speciesName)
*(scalar(1) - Yf(species1Name_, Tf) - Yf(species2Name_, Tf));
}
}
Foam::tmp<Foam::volScalarField>
Foam::interfaceCompositionModels::nonRandomTwoLiquid::YfPrime
(
const word& speciesName,
const volScalarField& Tf
) const
{
if (speciesName == species1Name_)
{
return
otherMulticomponentThermo().Y(speciesName)
*speciesModel1_->YfPrime(speciesName, Tf)
*gamma1_;
}
else if (speciesName == species2Name_)
{
return
otherMulticomponentThermo().Y(speciesName)
*speciesModel2_->YfPrime(speciesName, Tf)
*gamma2_;
}
else
{
return
- thermo().Y(speciesName)
*(YfPrime(species1Name_, Tf) + YfPrime(species2Name_, Tf));
}
}
// ************************************************************************* //