Files
OpenFOAM-12/applications/modules/multiphaseEuler/phaseSystems/phaseSystem/phaseSystemSolve.C
Henry Weller 5fd30443f3 multiphaseEuler: New implicit drag algorithm replaces partial-elimination corrector
The momentum equation central coefficient and drag matrix is formulated,
inverted and used to eliminate the drag terms from each of the phase momentum
equations which are combined for formulate a drag-implicit pressure equation.
This eliminates the lagged drag terms from the previous formulation which
significantly improves convergence for small particle and Euler-VoF high-drag
cases.

It would also be possible to refactor the virtual-mass terms and include the
central coefficients of the phase acceleration terms in the drag matrix before
inversion to further improve the implicitness of the phase momentum-pressure
coupling for bubbly flows.  This work is pending funding.
2023-08-26 10:09:38 +01:00

576 lines
18 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2013-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "phaseSystem.H"
#include "MULES.H"
#include "subCycle.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "fvcSnGrad.H"
#include "fvcFlux.H"
#include "fvcMeshPhi.H"
#include "fvcSup.H"
#include "fvmDdt.H"
#include "fvmLaplacian.H"
#include "fvmSup.H"
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::phaseSystem::solve(const PtrList<volScalarField>& rAs)
{
const dictionary& alphaControls = mesh_.solution().solverDict("alpha");
const label nAlphaSubCycles(alphaControls.lookup<label>("nAlphaSubCycles"));
const label nAlphaCorr(alphaControls.lookup<label>("nAlphaCorr"));
const bool LTS = fv::localEulerDdt::enabled(mesh_);
// Temporary switch for testing and comparing the standard split
// and the new un-split phase flux discretisation
const bool splitPhaseFlux
(
alphaControls.lookupOrDefault<Switch>("splitPhaseFlux", false)
);
// Temporary switch for testing and comparing the standard mean flux
// and the new phase flux reference for the phase flux correction
const bool meanFluxReference
(
alphaControls.lookupOrDefault<Switch>("meanFluxReference", false)
);
// Optional reference phase which is not solved for
// but obtained from the sum of the other phases
phaseModel* referencePhasePtr = nullptr;
// The phases which are solved
// i.e. the moving phases less the optional reference phase
phaseModelPartialList solvePhases;
if (referencePhaseName_ != word::null)
{
referencePhasePtr = &phases()[referencePhaseName_];
solvePhases.setSize(movingPhases().size() - 1);
label solvePhasesi = 0;
forAll(movingPhases(), movingPhasei)
{
if (&movingPhases()[movingPhasei] != referencePhasePtr)
{
solvePhases.set(solvePhasesi++, &movingPhases()[movingPhasei]);
}
}
}
else
{
solvePhases = movingPhases();
}
forAll(phases(), phasei)
{
phases()[phasei].correctBoundaryConditions();
}
// Calculate the void fraction
volScalarField alphaVoid
(
IOobject
(
"alphaVoid",
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedScalar(dimless, 1)
);
forAll(stationaryPhases(), stationaryPhasei)
{
alphaVoid -= stationaryPhases()[stationaryPhasei];
}
// Calculate the effective flux of the moving phases
tmp<surfaceScalarField> tphiMoving(phi_);
if (stationaryPhases().size())
{
tphiMoving = phi_/upwind<scalar>(mesh_, phi_).interpolate(alphaVoid);
}
const surfaceScalarField& phiMoving = tphiMoving();
bool dilatation = false;
forAll(movingPhases(), movingPhasei)
{
if (movingPhases()[movingPhasei].divU().valid())
{
dilatation = true;
break;
}
}
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{
PtrList<volScalarField::Internal> Sps(phases().size());
PtrList<volScalarField::Internal> Sus(phases().size());
forAll(movingPhases(), movingPhasei)
{
const phaseModel& phase = movingPhases()[movingPhasei];
const volScalarField& alpha = phase;
const label phasei = phase.index();
Sps.set
(
phasei,
new volScalarField::Internal
(
IOobject
(
"Sp",
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedScalar(dimless/dimTime, 0)
)
);
Sus.set
(
phasei,
new volScalarField::Internal
(
"Su",
min(alpha.v(), scalar(1))
*fvc::div(fvc::absolute(phi_, phase.U()))->v()
)
);
if (dilatation)
{
// Construct the dilatation rate source term
volScalarField::Internal dgdt
(
volScalarField::Internal::New
(
"dgdt",
mesh_,
dimensionedScalar(dimless/dimTime, 0)
)
);
forAll(phases(), phasej)
{
const phaseModel& phase2 = phases()[phasej];
const volScalarField& alpha2 = phase2;
if (&phase2 != &phase)
{
if (phase.divU().valid())
{
dgdt += alpha2()*phase.divU()()();
}
if (phase2.divU().valid())
{
dgdt -= alpha()*phase2.divU()()();
}
}
}
volScalarField::Internal& Sp = Sps[phasei];
volScalarField::Internal& Su = Sus[phasei];
forAll(dgdt, celli)
{
if (dgdt[celli] > 0)
{
Sp[celli] -= dgdt[celli]/max(1 - alpha[celli], 1e-4);
Su[celli] += dgdt[celli]/max(1 - alpha[celli], 1e-4);
}
else if (dgdt[celli] < 0)
{
Sp[celli] += dgdt[celli]/max(alpha[celli], 1e-4);
}
}
}
}
tmp<volScalarField> trSubDeltaT;
if (LTS && nAlphaSubCycles > 1)
{
trSubDeltaT =
fv::localEulerDdt::localRSubDeltaT(mesh_, nAlphaSubCycles);
}
List<volScalarField*> alphaPtrs(phases().size());
forAll(phases(), phasei)
{
alphaPtrs[phasei] = &phases()[phasei];
}
for
(
subCycle<volScalarField, subCycleFields> alphaSubCycle
(
alphaPtrs,
nAlphaSubCycles
);
!(++alphaSubCycle).end();
)
{
// Create correction fluxes
PtrList<surfaceScalarField> alphaPhis(phases().size());
tmp<surfaceScalarField> alphaDByAf;
if (implicitPhasePressure() && (rAs.size()))
{
alphaDByAf = this->alphaDByAf(rAs);
}
forAll(movingPhases(), movingPhasei)
{
const phaseModel& phase = movingPhases()[movingPhasei];
const volScalarField& alpha = phase;
alphaPhis.set
(
phase.index(),
new surfaceScalarField
(
IOobject::groupName("alphaPhiCorr", phase.name()),
fvc::flux
(
splitPhaseFlux ? phi_ : phase.phi()(),
alpha,
"div(phi," + alpha.name() + ')'
)
)
);
surfaceScalarField& alphaPhi = alphaPhis[phase.index()];
if (splitPhaseFlux)
{
forAll(phases(), phasei)
{
const phaseModel& phase2 = phases()[phasei];
const volScalarField& alpha2 = phase2;
if (&phase2 == &phase) continue;
surfaceScalarField phir(phase.phi() - phase2.phi());
cAlphaTable::const_iterator cAlpha
(
cAlphas_.find(phaseInterface(phase, phase2))
);
if (cAlpha != cAlphas_.end())
{
surfaceScalarField phic
(
(mag(phi_) + mag(phir))/mesh_.magSf()
);
phir +=
min(cAlpha()*phic, max(phic))
*nHatf(alpha, alpha2);
}
const word phirScheme
(
"div(phir,"
+ alpha2.name() + ',' + alpha.name()
+ ')'
);
alphaPhi += fvc::flux
(
-fvc::flux(-phir, alpha2, phirScheme),
alpha,
phirScheme
);
}
}
else if (!cAlphas_.empty())
{
forAll(phases(), phasei)
{
const phaseModel& phase2 = phases()[phasei];
const volScalarField& alpha2 = phase2;
if (&phase2 == &phase) continue;
cAlphaTable::const_iterator cAlpha
(
cAlphas_.find(phaseInterface(phase, phase2))
);
if (cAlpha != cAlphas_.end())
{
const surfaceScalarField phir
(
phase.phi() - phase2.phi()
);
const surfaceScalarField phic
(
(mag(phi_) + mag(phir))/mesh_.magSf()
);
const surfaceScalarField phirc
(
min(cAlpha()*phic, max(phic))
*nHatf(alpha, alpha2)
);
const word phirScheme
(
"div(phir,"
+ alpha2.name() + ',' + alpha.name()
+ ')'
);
alphaPhi += fvc::flux
(
-fvc::flux(-phirc, alpha2, phirScheme),
alpha,
phirScheme
);
}
}
}
if (alphaDByAf.valid())
{
alphaPhi +=
alphaDByAf()
*fvc::snGrad(alpha, "bounded")*mesh_.magSf();
}
phase.correctInflowOutflow(alphaPhi);
MULES::limit
(
geometricOneField(),
alpha,
meanFluxReference
? phiMoving // Guarantees boundedness but less accurate
: phase.phi()(), // Less robust but more accurate
alphaPhi,
Sps[phase.index()],
Sus[phase.index()],
min(alphaVoid.primitiveField(), phase.alphaMax())(),
zeroField(),
false
);
}
// Limit the flux corrections to ensure the phase fractions sum to 1
{
// Generate alphas for the moving phases
UPtrList<const volScalarField> alphasMoving
(
movingPhases().size()
);
UPtrList<surfaceScalarField> alphaPhisMoving
(
movingPhases().size()
);
forAll(movingPhases(), movingPhasei)
{
const phaseModel& phase = movingPhases()[movingPhasei];
alphasMoving.set(movingPhasei, &phase);
alphaPhisMoving.set
(
movingPhasei,
&alphaPhis[phase.index()]
);
}
MULES::limitSum(alphasMoving, alphaPhisMoving, phiMoving);
}
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
volScalarField& alpha = phase;
surfaceScalarField& alphaPhi = alphaPhis[phase.index()];
phase.correctInflowOutflow(alphaPhi);
MULES::explicitSolve
(
geometricOneField(),
alpha,
alphaPhi,
Sps[phase.index()],
Sus[phase.index()]
);
if (alphaSubCycle.index() == 1)
{
phase.alphaPhiRef() = alphaPhi;
}
else
{
phase.alphaPhiRef() += alphaPhi;
}
}
if (alphaDByAf.valid())
{
// Update alphaDByAf due to changes in alpha
alphaDByAf = this->alphaDByAf(rAs);
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
volScalarField& alpha = phase;
fvScalarMatrix alphaEqn
(
fvm::ddt(alpha) - fvc::ddt(alpha)
- fvm::laplacian(alphaDByAf(), alpha, "bounded")
);
alphaEqn.solve();
phase.alphaPhiRef() += alphaEqn.flux();
}
}
// Report the phase fractions and the phase fraction sum
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
Info<< phase.name() << " fraction, min, max = "
<< phase.weightedAverage(mesh_.V()).value()
<< ' ' << min(phase).value()
<< ' ' << max(phase).value()
<< endl;
}
if (referencePhasePtr)
{
volScalarField& referenceAlpha = *referencePhasePtr;
referenceAlpha = alphaVoid;
forAll(solvePhases, solvePhasei)
{
referenceAlpha -= solvePhases[solvePhasei];
}
}
else
{
volScalarField sumAlphaMoving
(
IOobject
(
"sumAlphaMoving",
mesh_.time().name(),
mesh_
),
mesh_,
dimensionedScalar(dimless, 0)
);
forAll(movingPhases(), movingPhasei)
{
sumAlphaMoving += movingPhases()[movingPhasei];
}
Info<< "Phase-sum volume fraction, min, max = "
<< (sumAlphaMoving + 1 - alphaVoid)()
.weightedAverage(mesh_.V()).value()
<< ' ' << min(sumAlphaMoving + 1 - alphaVoid).value()
<< ' ' << max(sumAlphaMoving + 1 - alphaVoid).value()
<< endl;
// Correct the sum of the phase fractions to avoid drift
forAll(movingPhases(), movingPhasei)
{
movingPhases()[movingPhasei] *= alphaVoid/sumAlphaMoving;
}
}
}
if (nAlphaSubCycles > 1)
{
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
phase.alphaPhiRef() /= nAlphaSubCycles;
}
}
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
phase.alphaRhoPhiRef() =
fvc::interpolate(phase.rho())*phase.alphaPhi();
phase.maxMin(0, 1);
}
if (referencePhasePtr)
{
phaseModel& referencePhase = *referencePhasePtr;
referencePhase.alphaPhiRef() = phi_;
forAll(solvePhases, solvePhasei)
{
phaseModel& phase = solvePhases[solvePhasei];
referencePhase.alphaPhiRef() -= phase.alphaPhi();
}
referencePhase.alphaRhoPhiRef() =
fvc::interpolate(referencePhase.rho())
*referencePhase.alphaPhi();
volScalarField& referenceAlpha = referencePhase;
referenceAlpha = alphaVoid;
forAll(solvePhases, solvePhasei)
{
referenceAlpha -= solvePhases[solvePhasei];
}
}
}
}
// ************************************************************************* //