Files
OpenFOAM-12/applications/utilities/postProcessing/graphics/PVReaders/vtkPVFoam/vtkPVFoamVolFields.H
Henry Weller 67d3a8dc1b paraFoam: Added support to read vol internal fields
This is useful to visualise sources which are created as
volScalarField::Internal, e.g. the turbulence generation term for models like
kEpsilon in which it is named kEpsilon:G.
2019-07-15 22:26:34 +01:00

454 lines
12 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2019 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
InClass
vtkPVFoam
\*---------------------------------------------------------------------------*/
#ifndef vtkPVFoamVolFields_H
#define vtkPVFoamVolFields_H
// OpenFOAM includes
#include "emptyFvPatchField.H"
#include "wallPolyPatch.H"
#include "faceSet.H"
#include "volPointInterpolation.H"
#include "vtkPVFoamSurfaceField.H"
#include "vtkPVFoamPatchField.H"
#include "vtkOpenFOAMTupleRemap.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class Type>
void Foam::vtkPVFoam::convertVolFields
(
const fvMesh& mesh,
const PtrList<PrimitivePatchInterpolation<primitivePatch>>& ppInterpList,
const IOobjectList& objects,
const bool interpFields,
vtkMultiBlockDataSet* output
)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
forAllConstIter(IOobjectList, objects, iter)
{
// Restrict to GeometricField<Type, ...>
if
(
iter()->headerClassName()
!= GeometricField<Type, fvPatchField, volMesh>::typeName
)
{
continue;
}
// Load field
GeometricField<Type, fvPatchField, volMesh> tf
(
*iter(),
mesh
);
// Interpolated field (demand driven)
autoPtr<GeometricField<Type, pointPatchField, pointMesh>> ptfPtr;
if (interpFields)
{
if (debug)
{
InfoInFunction<< "interpolating:" << tf.name() << endl;
}
ptfPtr.reset
(
volPointInterpolation::New(tf.mesh()).interpolate(tf).ptr()
);
}
// Convert activated internalMesh regions
convertVolFieldBlock
(
tf,
ptfPtr,
output,
arrayRangeVolume_,
regionPolyDecomp_
);
// Convert activated cellZones
convertVolFieldBlock
(
tf,
ptfPtr,
output,
arrayRangeCellZones_,
zonePolyDecomp_
);
// Convert activated cellSets
convertVolFieldBlock
(
tf,
ptfPtr,
output,
arrayRangeCellSets_,
csetPolyDecomp_
);
// Convert patches - if activated
for
(
int partId = arrayRangePatches_.start();
partId < arrayRangePatches_.end();
++partId
)
{
const word patchName = getPartName(partId);
const label datasetNo = partDataset_[partId];
const label patchId = patches.findPatchID(patchName);
if (!partStatus_[partId] || datasetNo < 0 || patchId < 0)
{
continue;
}
const fvPatchField<Type>& ptf = tf.boundaryField()[patchId];
if
(
isType<emptyFvPatchField<Type>>(ptf)
||
(
reader_->GetExtrapolatePatches()
&& !polyPatch::constraintType(patches[patchId].type())
)
)
{
fvPatch p(ptf.patch().patch(), tf.mesh().boundary());
tmp<Field<Type>> tpptf
(
fvPatchField<Type>(p, tf).patchInternalField()
);
convertPatchField
(
tf.name(),
tpptf(),
output,
arrayRangePatches_,
datasetNo
);
if (interpFields)
{
convertPatchPointField
(
tf.name(),
ppInterpList[patchId].faceToPointInterpolate(tpptf)(),
output,
arrayRangePatches_,
datasetNo
);
}
}
else
{
convertPatchField
(
tf.name(),
ptf,
output,
arrayRangePatches_,
datasetNo
);
if (interpFields)
{
convertPatchPointField
(
tf.name(),
ppInterpList[patchId].faceToPointInterpolate(ptf)(),
output,
arrayRangePatches_,
datasetNo
);
}
}
}
// Convert face zones - if activated
for
(
int partId = arrayRangeFaceZones_.start();
partId < arrayRangeFaceZones_.end();
++partId
)
{
const word zoneName = getPartName(partId);
const label datasetNo = partDataset_[partId];
if (!partStatus_[partId] || datasetNo < 0)
{
continue;
}
const faceZoneMesh& zMesh = mesh.faceZones();
const label zoneId = zMesh.findZoneID(zoneName);
if (zoneId < 0)
{
continue;
}
convertSurfaceField
(
tf,
output,
arrayRangeFaceZones_,
datasetNo,
mesh,
zMesh[zoneId]
);
}
// Convert face sets - if activated
for
(
int partId = arrayRangeFaceSets_.start();
partId < arrayRangeFaceSets_.end();
++partId
)
{
const word selectName = getPartName(partId);
const label datasetNo = partDataset_[partId];
if (!partStatus_[partId] || datasetNo < 0)
{
continue;
}
const faceSet fSet(mesh, selectName);
convertSurfaceField
(
tf,
output,
arrayRangeFaceSets_,
datasetNo,
mesh,
fSet.toc()
);
}
}
}
template<class Type>
void Foam::vtkPVFoam::convertVolInternalFields
(
const fvMesh& mesh,
const IOobjectList& objects,
vtkMultiBlockDataSet* output
)
{
forAllConstIter(IOobjectList, objects, iter)
{
// Restrict to GeometricField<Type, ...>::Internal
if
(
iter()->headerClassName()
!= GeometricField<Type, fvPatchField, volMesh>::Internal::typeName
)
{
continue;
}
// Load field
typename GeometricField<Type, fvPatchField, volMesh>::Internal tf
(
*iter(),
mesh
);
// Convert activated internalMesh regions
convertVolInternalFieldBlock<Type>
(
tf,
output,
arrayRangeVolume_,
regionPolyDecomp_
);
// Convert activated cellZones
convertVolInternalFieldBlock<Type>
(
tf,
output,
arrayRangeCellZones_,
zonePolyDecomp_
);
// Convert activated cellSets
convertVolInternalFieldBlock<Type>
(
tf,
output,
arrayRangeCellSets_,
csetPolyDecomp_
);
}
}
template<class Type>
void Foam::vtkPVFoam::convertVolFieldBlock
(
const GeometricField<Type, fvPatchField, volMesh>& tf,
autoPtr<GeometricField<Type, pointPatchField, pointMesh>>& ptfPtr,
vtkMultiBlockDataSet* output,
const arrayRange& range,
const List<polyDecomp>& decompLst
)
{
for (int partId = range.start(); partId < range.end(); ++partId)
{
const label datasetNo = partDataset_[partId];
if (datasetNo >= 0 && partStatus_[partId])
{
convertVolInternalField<Type>
(
tf,
output,
range,
datasetNo,
decompLst[datasetNo]
);
if (ptfPtr.valid())
{
convertPointField
(
ptfPtr(),
tf,
output,
range,
datasetNo,
decompLst[datasetNo]
);
}
}
}
}
template<class Type>
void Foam::vtkPVFoam::convertVolInternalFieldBlock
(
const typename GeometricField<Type, fvPatchField, volMesh>::Internal& tf,
vtkMultiBlockDataSet* output,
const arrayRange& range,
const List<polyDecomp>& decompLst
)
{
for (int partId = range.start(); partId < range.end(); ++partId)
{
const label datasetNo = partDataset_[partId];
if (datasetNo >= 0 && partStatus_[partId])
{
convertVolInternalField<Type>
(
tf,
output,
range,
datasetNo,
decompLst[datasetNo]
);
}
}
}
template<class Type>
void Foam::vtkPVFoam::convertVolInternalField
(
const typename GeometricField<Type, fvPatchField, volMesh>::Internal& tf,
vtkMultiBlockDataSet* output,
const arrayRange& range,
const label datasetNo,
const polyDecomp& decompInfo
)
{
const label nComp = pTraits<Type>::nComponents;
const labelList& superCells = decompInfo.superCells();
vtkFloatArray* celldata = vtkFloatArray::New();
celldata->SetNumberOfTuples(superCells.size());
celldata->SetNumberOfComponents(nComp);
celldata->Allocate(nComp*superCells.size());
celldata->SetName(tf.name().c_str());
if (debug)
{
InfoInFunction
<< "converting volField::Internal: " << tf.name()
<< " size = " << tf.size()
<< " nComp=" << nComp
<< " nTuples = " << superCells.size() << endl;
}
float vec[nComp];
forAll(superCells, i)
{
const Type& t = tf[superCells[i]];
for (direction d=0; d<nComp; ++d)
{
vec[d] = component(t, d);
}
vtkOpenFOAMTupleRemap<Type>(vec);
celldata->InsertTuple(i, vec);
}
vtkUnstructuredGrid::SafeDownCast
(
GetDataSetFromBlock(output, range, datasetNo)
) ->GetCellData()
->AddArray(celldata);
celldata->Delete();
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //