Whilst the cell values of non-solved species do not change, the boundary values might, and correcting them is necessary for certain post-processing operations to produce sensible results.
147 lines
4.3 KiB
C++
147 lines
4.3 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration | Website: https://openfoam.org
|
|
\\ / A nd | Copyright (C) 2022-2024 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "multiphaseEuler.H"
|
|
#include "fvcDdt.H"
|
|
#include "fvcDiv.H"
|
|
#include "fvcSup.H"
|
|
#include "fvmDdt.H"
|
|
#include "fvmDiv.H"
|
|
#include "fvmSup.H"
|
|
|
|
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
|
|
|
|
void Foam::solvers::multiphaseEuler::compositionPredictor()
|
|
{
|
|
autoPtr<phaseSystem::specieTransferTable>
|
|
specieTransferPtr(fluid.specieTransfer());
|
|
|
|
phaseSystem::specieTransferTable&
|
|
specieTransfer(specieTransferPtr());
|
|
|
|
fluid_.correctReactions();
|
|
|
|
forAll(fluid.multicomponentPhases(), multicomponentPhasei)
|
|
{
|
|
phaseModel& phase = fluid_.multicomponentPhases()[multicomponentPhasei];
|
|
|
|
UPtrList<volScalarField>& Y = phase.YRef();
|
|
const volScalarField& alpha = phase;
|
|
const volScalarField& rho = phase.rho();
|
|
|
|
forAll(Y, i)
|
|
{
|
|
if (phase.solveSpecie(i))
|
|
{
|
|
fvScalarMatrix YiEqn
|
|
(
|
|
phase.YiEqn(Y[i])
|
|
==
|
|
*specieTransfer[Y[i].name()]
|
|
+ fvModels().source(alpha, rho, Y[i])
|
|
);
|
|
|
|
YiEqn.relax();
|
|
|
|
fvConstraints().constrain(YiEqn);
|
|
|
|
YiEqn.solve("Yi");
|
|
|
|
fvConstraints().constrain(Y[i]);
|
|
}
|
|
else
|
|
{
|
|
Y[i].correctBoundaryConditions();
|
|
}
|
|
}
|
|
}
|
|
|
|
fluid_.correctSpecies();
|
|
}
|
|
|
|
|
|
void Foam::solvers::multiphaseEuler::energyPredictor()
|
|
{
|
|
autoPtr<phaseSystem::heatTransferTable>
|
|
heatTransferPtr(fluid.heatTransfer());
|
|
|
|
phaseSystem::heatTransferTable& heatTransfer = heatTransferPtr();
|
|
|
|
forAll(fluid.anisothermalPhases(), anisothermalPhasei)
|
|
{
|
|
phaseModel& phase = fluid_.anisothermalPhases()[anisothermalPhasei];
|
|
|
|
const volScalarField& alpha = phase;
|
|
const volScalarField& rho = phase.rho();
|
|
|
|
fvScalarMatrix EEqn
|
|
(
|
|
phase.heEqn()
|
|
==
|
|
*heatTransfer[phase.name()]
|
|
+ fvModels().source(alpha, rho, phase.thermo().he())
|
|
);
|
|
|
|
EEqn.relax();
|
|
fvConstraints().constrain(EEqn);
|
|
EEqn.solve();
|
|
fvConstraints().constrain(phase.thermo().he());
|
|
}
|
|
|
|
fluid_.correctThermo();
|
|
fluid_.correctContinuityError();
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
|
|
|
|
void Foam::solvers::multiphaseEuler::thermophysicalPredictor()
|
|
{
|
|
if (pimple.thermophysics())
|
|
{
|
|
for (int Ecorr=0; Ecorr<nEnergyCorrectors; Ecorr++)
|
|
{
|
|
fluid_.predictThermophysicalTransport();
|
|
compositionPredictor();
|
|
energyPredictor();
|
|
|
|
forAll(fluid.anisothermalPhases(), anisothermalPhasei)
|
|
{
|
|
const phaseModel& phase =
|
|
fluid.anisothermalPhases()[anisothermalPhasei];
|
|
|
|
Info<< phase.name() << " min/max T "
|
|
<< min(phase.thermo().T()).value()
|
|
<< " - "
|
|
<< max(phase.thermo().T()).value()
|
|
<< endl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|