Files
OpenFOAM-12/src/functionObjects/field/streamlines/streamlines.C
Will Bainbridge e5cf0cf4ed Cloud: Accumulate warning messages associated with location failures
Warnings about initialisation of particles with locations outside of the
mesh and about the positional inaccuracy of NCC transfers are now
accumulated and printed once per time-step. This way, the log isn't
obscured by hundreds of such warnings.

Also, the pattern in which warnings are silenced after some arbitrary
number (typically 100) have been issued has been removed. This pattern
means that user viewing the log later in the run may be unaware that a
problem is still present. Accumulated warnings are concise enough that
they do not need to be silenced. They are generated every time-step, and
so remain visible throughout the log.
2023-09-19 10:57:11 +01:00

637 lines
19 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "Pstream.H"
#include "functionObjectList.H"
#include "streamlines.H"
#include "streamlinesCloud.H"
#include "ReadFields.H"
#include "meshSearch.H"
#include "sampledSet.H"
#include "globalIndex.H"
#include "distributionMap.H"
#include "interpolationCellPoint.H"
#include "PatchTools.H"
#include "writeFile.H"
#include "polyTopoChangeMap.H"
#include "polyMeshMap.H"
#include "polyDistributionMap.H"
#include "OSspecific.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
template<class Type>
void gatherAndFlatten(DynamicField<Type>& field)
{
List<List<Type>> gatheredField(Pstream::nProcs());
gatheredField[Pstream::myProcNo()] = field;
Pstream::gatherList(gatheredField);
field =
ListListOps::combine<List<Type>>
(
gatheredField,
accessOp<List<Type>>()
);
}
}
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
template<>
const char*
NamedEnum<functionObjects::streamlines::trackDirection, 3>::names[] =
{"forward", "backward", "both"};
namespace functionObjects
{
defineTypeNameAndDebug(streamlines, 0);
addToRunTimeSelectionTable(functionObject, streamlines, dictionary);
const NamedEnum<streamlines::trackDirection, 3>
streamlines::trackDirectionNames_;
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::streamlines::streamlines
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
fvMeshFunctionObject(name, runTime, dict),
dict_(dict),
nSubCycle_(0)
{
read(dict_);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::functionObjects::streamlines::~streamlines()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::streamlines::read(const dictionary& dict)
{
if (dict != dict_)
{
dict_ = dict;
}
Info<< type() << " " << name() << ":" << nl;
dict.lookup("fields") >> fields_;
UName_ = dict.lookupOrDefault("U", word("U"));
writeAge_ = dict.lookupOrDefault<Switch>("writeAge", true);
trackDirection_ = trackDirectionNames_[word(dict.lookup("direction"))];
trackOutside_ = dict.lookupOrDefault<Switch>("outside", false);
dict.lookup("lifeTime") >> lifeTime_;
if (lifeTime_ < 1)
{
FatalErrorInFunction
<< "Illegal value " << lifeTime_ << " for lifeTime"
<< exit(FatalError);
}
bool subCycling = dict.found("nSubCycle");
bool fixedLength = dict.found("trackLength");
if (subCycling && fixedLength)
{
FatalIOErrorInFunction(dict)
<< "Cannot both specify automatic time stepping (through '"
<< "nSubCycle' specification) and fixed track length (through '"
<< "trackLength')"
<< exit(FatalIOError);
}
if (subCycling)
{
nSubCycle_ = max(dict.lookup<scalar>("nSubCycle"), 1);
trackLength_ = vGreat;
Info<< " automatic track length specified through"
<< " number of sub cycles : " << nSubCycle_ << nl << endl;
}
else
{
nSubCycle_ = 1;
dict.lookup("trackLength") >> trackLength_;
Info<< " fixed track length specified : "
<< trackLength_ << nl << endl;
}
interpolationScheme_ =
dict.lookupOrDefault
(
"interpolationScheme",
interpolationCellPoint<scalar>::typeName
);
cloudName_ = dict.lookupOrDefault<word>("cloudName", "streamlines");
meshSearchPtr_.reset(new meshSearch(mesh_));
sampledSetPtr_ = sampledSet::New
(
"seedSampleSet",
mesh_,
meshSearchPtr_(),
dict.subDict("seedSampleSet")
);
formatterPtr_ = setWriter::New(dict.lookup("setFormat"), dict);
return true;
}
Foam::wordList Foam::functionObjects::streamlines::fields() const
{
wordList allFields(fields_);
allFields.append(UName_);
return allFields;
}
bool Foam::functionObjects::streamlines::execute()
{
return true;
}
bool Foam::functionObjects::streamlines::write()
{
Info<< type() << " " << name() << " write:" << nl;
// Create list of available fields
wordList fieldNames;
forAll(fields_, fieldi)
{
if
(
false
#define FoundTypeField(Type, nullArg) \
|| foundObject<VolField<Type>>(fields_[fieldi])
FOR_ALL_FIELD_TYPES(FoundTypeField)
#undef FoundTypeField
)
{
fieldNames.append(fields_[fieldi]);
}
else
{
cannotFindObject(fields_[fieldi]);
}
}
// Lookup fields and construct interpolators
#define DeclareTypeInterpolator(Type, nullArg) \
PtrList<interpolation<Type>> Type##Interp(fieldNames.size());
FOR_ALL_FIELD_TYPES(DeclareTypeInterpolator);
#undef DeclareTypeInterpolator
forAll(fieldNames, fieldi)
{
#define ConstructTypeInterpolator(Type, nullArg) \
if (mesh_.foundObject<VolField<Type>>(fieldNames[fieldi])) \
{ \
Type##Interp.set \
( \
fieldi, \
interpolation<Type>::New \
( \
interpolationScheme_, \
mesh_.lookupObject<VolField<Type>>(fieldNames[fieldi]) \
) \
); \
}
FOR_ALL_FIELD_TYPES(ConstructTypeInterpolator);
#undef ConstructTypeInterpolator
}
// Create a velocity interpolator if it is not already available
const label UIndex = findIndex(fieldNames, UName_);
tmpNrc<interpolation<vector>> UInterp(nullptr);
if (UIndex == -1)
{
UInterp =
tmpNrc<interpolation<vector>>
(
interpolation<vector>::New
(
interpolationScheme_,
mesh_.lookupObject<volVectorField>(UName_)
).ptr()
);
}
// Do tracking to create sampled data
DynamicField<point> allPositions;
DynamicField<label> allTracks;
DynamicField<label> allTrackParts;
DynamicField<scalar> allAges;
#define DeclareAllTypes(Type, nullArg) \
List<DynamicField<Type>> all##Type##s(fieldNames.size());
FOR_ALL_FIELD_TYPES(DeclareAllTypes);
#undef DeclareAllTypes
{
// Create a cloud and initialise with points from the sampled set
globalIndex gi(sampledSetPtr_().size());
streamlinesCloud particles
(
mesh_,
cloudName_,
IDLList<streamlinesParticle>()
);
label nLocateBoundaryHits;
forAll(sampledSetPtr_(), i)
{
particles.addParticle
(
new streamlinesParticle
(
mesh_,
sampledSetPtr_().positions()[i],
sampledSetPtr_().cells()[i],
nLocateBoundaryHits,
lifeTime_,
gi.toGlobal(i)
)
);
}
// Report the number of successful seeds
const label nSeeds = returnReduce(particles.size(), sumOp<label>());
Info << " Seeded " << nSeeds << " particles" << endl;
// Create tracking data
streamlinesParticle::trackingData td
(
particles,
#define TypeInterpolatorParameter(Type, nullArg) \
Type##Interp,
FOR_ALL_FIELD_TYPES(TypeInterpolatorParameter)
#undef TypeInterpolatorParameter
UIndex != -1 ? vectorInterp[UIndex] : UInterp(),
trackDirection_ == trackDirection::forward,
trackOutside_,
nSubCycle_,
trackLength_,
allPositions,
allTracks,
allTrackParts,
allAges
#define AllTypesParameter(Type, nullArg) \
, all##Type##s
FOR_ALL_FIELD_TYPES(AllTypesParameter)
#undef AllTypesParameter
);
// Track
IDLList<streamlinesParticle> initialParticles;
if (trackDirection_ == trackDirection::both)
{
initialParticles = particles;
}
particles.move(particles, td);
if (trackDirection_ == trackDirection::both)
{
particles.IDLList<streamlinesParticle>::operator=(initialParticles);
td.trackForward_ = !td.trackForward_;
particles.move(particles, td);
}
}
// Gather data on the master
if (Pstream::parRun())
{
gatherAndFlatten(allPositions);
gatherAndFlatten(allTracks);
gatherAndFlatten(allTrackParts);
gatherAndFlatten(allAges);
forAll(fieldNames, fieldi)
{
#define GatherAndFlattenAllTypes(Type, nullArg) \
if (Type##Interp.set(fieldi)) \
{ \
gatherAndFlatten(all##Type##s[fieldi]); \
}
FOR_ALL_FIELD_TYPES(GatherAndFlattenAllTypes);
#undef GatherAndFlattenAllTypes
}
}
// Report the total number of samples
Info<< " Sampled " << allPositions.size() << " locations" << endl;
// Bin-sort by track and trackPart to build an ordering
labelList order(allPositions.size());
if (Pstream::master() && allPositions.size())
{
const label nTracks = max(allTracks) + 1;
const label trackParti0 = min(allTrackParts);
const label trackParti1 = max(allTrackParts) + 1;
labelListList trackPartCounts
(
nTracks,
labelList(trackParti1 - trackParti0, 0)
);
forAll(allPositions, samplei)
{
const label tracki = allTracks[samplei];
const label trackParti = -trackParti0 + allTrackParts[samplei];
trackPartCounts[tracki][trackParti] ++;
}
label offset = 0;
labelListList trackPartOffsets
(
nTracks,
labelList(trackParti1 - trackParti0, 0)
);
forAll(trackPartOffsets, tracki)
{
forAll(trackPartOffsets[tracki], trackParti)
{
trackPartOffsets[tracki][trackParti] += offset;
offset += trackPartCounts[tracki][trackParti];
}
}
forAll(trackPartCounts, tracki)
{
trackPartCounts[tracki] = 0;
}
forAll(allPositions, samplei)
{
const label tracki = allTracks[samplei];
const label trackParti = -trackParti0 + allTrackParts[samplei];
order[samplei] =
trackPartOffsets[tracki][trackParti]
+ trackPartCounts[tracki][trackParti];
trackPartCounts[tracki][trackParti] ++;
}
}
//auto reportTrackParts = [&]()
//{
// Info<< nl;
// forAll(allPositions, samplei)
// {
// if
// (
// samplei == 0
// || allTracks[samplei] != allTracks[samplei - 1]
// || allTrackParts[samplei] != allTrackParts[samplei - 1]
// )
// {
// Info<< "track #" << allTracks[samplei]
// << " part #" << allTrackParts[samplei]
// << " from i=" << samplei << " to ";
// }
// if
// (
// samplei == allPositions.size() - 1
// || allTracks[samplei + 1] != allTracks[samplei]
// || allTrackParts[samplei + 1] != allTrackParts[samplei]
// )
// {
// Info<< "i=" << samplei << nl;
// }
// }
//};
//reportTrackParts();
// Reorder
if (Pstream::master())
{
allPositions.rmap(allPositions, order);
allTracks.rmap(allTracks, order);
allTrackParts.rmap(allTrackParts, order);
allAges.rmap(allAges, order);
forAll(fieldNames, fieldi)
{
#define RMapAllTypes(Type, nullArg) \
if (Type##Interp.set(fieldi)) \
{ \
all##Type##s[fieldi].rmap(all##Type##s[fieldi], order); \
}
FOR_ALL_FIELD_TYPES(RMapAllTypes);
#undef RMapAllTypes
}
}
//reportTrackParts();
// Relabel tracks and track parts into track labels only, and join the
// forward and backward track parts that are connected to the seed
if (Pstream::master())
{
label samplei = 0, tracki = 0;
forAll(allPositions, samplej)
{
const label trackj = allTracks[samplej];
const label trackPartj = allTrackParts[samplej];
allPositions[samplei] = allPositions[samplej];
allTracks[samplei] = tracki;
allTrackParts[samplei] = 0;
allAges[samplei] = allAges[samplej];
forAll(fieldNames, fieldi)
{
#define ShuffleUpAllTypes(Type, nullArg) \
if (Type##Interp.set(fieldi)) \
{ \
all##Type##s[fieldi][samplei] = \
all##Type##s[fieldi][samplej]; \
}
FOR_ALL_FIELD_TYPES(ShuffleUpAllTypes);
#undef ShuffleUpAllTypes
}
const bool joinNewParts =
samplej != allPositions.size() - 1
&& trackPartj == -1
&& allTrackParts[samplej + 1] == 0;
if (!joinNewParts) samplei ++;
const bool newPart =
samplej == allPositions.size() - 1
|| trackj != allTracks[samplej + 1]
|| trackPartj != allTrackParts[samplej + 1];
if (!joinNewParts && newPart) tracki ++;
}
allPositions.resize(samplei);
allTracks.resize(samplei);
allTrackParts.resize(samplei);
allAges.resize(samplei);
forAll(fieldNames, fieldi)
{
#define ResizeAllTypes(Type, nullArg) \
if (Type##Interp.set(fieldi)) \
{ \
all##Type##s[fieldi].resize(samplei); \
}
FOR_ALL_FIELD_TYPES(ResizeAllTypes);
#undef ResizeAllTypes
}
}
//reportTrackParts();
// Write
if (Pstream::master() && allPositions.size())
{
// Make output directory
const fileName outputPath =
time_.globalPath()
/writeFile::outputPrefix
/(mesh_.name() != polyMesh::defaultRegion ? mesh_.name() : word())
/name()
/time_.name();
mkDir(outputPath);
// Pass data to the formatter to write
const label nValueSets = fieldNames.size() + writeAge_;
wordList valueSetNames(nValueSets);
#define DeclareTypeValueSets(Type, nullArg) \
UPtrList<const Field<Type>> Type##ValueSets(nValueSets);
FOR_ALL_FIELD_TYPES(DeclareTypeValueSets);
#undef DeclareTypeValueSets
if (writeAge_)
{
valueSetNames[0] = "age";
scalarValueSets.set(0, &allAges);
}
forAll(fieldNames, fieldi)
{
valueSetNames[fieldi + writeAge_] = fieldNames[fieldi];
#define SetTypeValueSetPtr(Type, nullArg) \
if (Type##Interp.set(fieldi)) \
{ \
Type##ValueSets.set \
( \
fieldi + writeAge_, \
&all##Type##s[fieldi] \
); \
}
FOR_ALL_FIELD_TYPES(SetTypeValueSetPtr);
#undef SetTypeValueSetPtr
}
formatterPtr_->write
(
outputPath,
"tracks",
coordSet(allTracks, word::null, allPositions),
valueSetNames
#define TypeValueSetsParameter(Type, nullArg) , Type##ValueSets
FOR_ALL_FIELD_TYPES(TypeValueSetsParameter)
#undef TypeValueSetsParameter
);
}
return true;
}
void Foam::functionObjects::streamlines::movePoints(const polyMesh& mesh)
{
if (&mesh == &mesh_)
{
// Moving mesh affects the search tree
read(dict_);
}
}
void Foam::functionObjects::streamlines::topoChange
(
const polyTopoChangeMap& map
)
{
if (&map.mesh() == &mesh_)
{
read(dict_);
}
}
void Foam::functionObjects::streamlines::mapMesh
(
const polyMeshMap& map
)
{
if (&map.mesh() == &mesh_)
{
read(dict_);
}
}
void Foam::functionObjects::streamlines::distribute
(
const polyDistributionMap& map
)
{
if (&map.mesh() == &mesh_)
{
read(dict_);
}
}
// ************************************************************************* //