Files
OpenFOAM-12/applications/solvers/multiphase/twoPhaseEulerFoam/twoPhaseSystem/twoPhaseSystem.C
Henry Weller 75ea76187b GeometricField::GeometricBoundaryField -> GeometricField::Boundary
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now.  Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit a25a449c9e

This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
2016-04-28 07:22:02 +01:00

608 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "twoPhaseSystem.H"
#include "PhaseCompressibleTurbulenceModel.H"
#include "BlendedInterfacialModel.H"
#include "virtualMassModel.H"
#include "heatTransferModel.H"
#include "liftModel.H"
#include "wallLubricationModel.H"
#include "turbulentDispersionModel.H"
#include "fvMatrix.H"
#include "surfaceInterpolate.H"
#include "MULES.H"
#include "subCycle.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "fvcSnGrad.H"
#include "fvcFlux.H"
#include "fvcCurl.H"
#include "fvmDdt.H"
#include "fvmLaplacian.H"
#include "fixedValueFvsPatchFields.H"
#include "blendingMethod.H"
#include "HashPtrTable.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::twoPhaseSystem
(
const fvMesh& mesh,
const dimensionedVector& g
)
:
IOdictionary
(
IOobject
(
"phaseProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
mesh_(mesh),
phase1_
(
*this,
*this,
wordList(lookup("phases"))[0]
),
phase2_
(
*this,
*this,
wordList(lookup("phases"))[1]
),
phi_
(
IOobject
(
"phi",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->calcPhi()
),
dgdt_
(
IOobject
(
"dgdt",
mesh.time().timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("dgdt", dimless/dimTime, 0)
)
{
phase2_.volScalarField::operator=(scalar(1) - phase1_);
// Blending
forAllConstIter(dictionary, subDict("blending"), iter)
{
blendingMethods_.insert
(
iter().dict().dictName(),
blendingMethod::New
(
iter().dict(),
wordList(lookup("phases"))
)
);
}
// Pairs
phasePair::scalarTable sigmaTable(lookup("sigma"));
phasePair::dictTable aspectRatioTable(lookup("aspectRatio"));
pair_.set
(
new phasePair
(
phase1_,
phase2_,
g,
sigmaTable
)
);
pair1In2_.set
(
new orderedPhasePair
(
phase1_,
phase2_,
g,
sigmaTable,
aspectRatioTable
)
);
pair2In1_.set
(
new orderedPhasePair
(
phase2_,
phase1_,
g,
sigmaTable,
aspectRatioTable
)
);
// Models
drag_.set
(
new BlendedInterfacialModel<dragModel>
(
lookup("drag"),
(
blendingMethods_.found("drag")
? blendingMethods_["drag"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_,
false // Do not zero drag coefficent at fixed-flux BCs
)
);
virtualMass_.set
(
new BlendedInterfacialModel<virtualMassModel>
(
lookup("virtualMass"),
(
blendingMethods_.found("virtualMass")
? blendingMethods_["virtualMass"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
heatTransfer_.set
(
new BlendedInterfacialModel<heatTransferModel>
(
lookup("heatTransfer"),
(
blendingMethods_.found("heatTransfer")
? blendingMethods_["heatTransfer"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
lift_.set
(
new BlendedInterfacialModel<liftModel>
(
lookup("lift"),
(
blendingMethods_.found("lift")
? blendingMethods_["lift"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
wallLubrication_.set
(
new BlendedInterfacialModel<wallLubricationModel>
(
lookup("wallLubrication"),
(
blendingMethods_.found("wallLubrication")
? blendingMethods_["wallLubrication"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
turbulentDispersion_.set
(
new BlendedInterfacialModel<turbulentDispersionModel>
(
lookup("turbulentDispersion"),
(
blendingMethods_.found("turbulentDispersion")
? blendingMethods_["turbulentDispersion"]
: blendingMethods_["default"]
),
pair_,
pair1In2_,
pair2In1_
)
);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::~twoPhaseSystem()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::rho() const
{
return phase1_*phase1_.thermo().rho() + phase2_*phase2_.thermo().rho();
}
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::U() const
{
return phase1_*phase1_.U() + phase2_*phase2_.U();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::calcPhi() const
{
return
fvc::interpolate(phase1_)*phase1_.phi()
+ fvc::interpolate(phase2_)*phase2_.phi();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kd() const
{
return drag_->K();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Kdf() const
{
return drag_->Kf();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Vm() const
{
return virtualMass_->K();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Vmf() const
{
return virtualMass_->Kf();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kh() const
{
return heatTransfer_->K();
}
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::F() const
{
return lift_->F<vector>() + wallLubrication_->F<vector>();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Ff() const
{
return lift_->Ff() + wallLubrication_->Ff();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::D() const
{
return turbulentDispersion_->D();
}
void Foam::twoPhaseSystem::solve()
{
const Time& runTime = mesh_.time();
volScalarField& alpha1 = phase1_;
volScalarField& alpha2 = phase2_;
const surfaceScalarField& phi1 = phase1_.phi();
const surfaceScalarField& phi2 = phase2_.phi();
const dictionary& alphaControls = mesh_.solverDict
(
alpha1.name()
);
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
label nAlphaCorr(readLabel(alphaControls.lookup("nAlphaCorr")));
word alphaScheme("div(phi," + alpha1.name() + ')');
word alpharScheme("div(phir," + alpha1.name() + ')');
alpha1.correctBoundaryConditions();
surfaceScalarField phic("phic", phi_);
surfaceScalarField phir("phir", phi1 - phi2);
tmp<surfaceScalarField> alpha1alpha2f;
if (pPrimeByA_.valid())
{
alpha1alpha2f =
fvc::interpolate(max(alpha1, scalar(0)))
*fvc::interpolate(max(alpha2, scalar(0)));
surfaceScalarField phiP
(
pPrimeByA_()*fvc::snGrad(alpha1, "bounded")*mesh_.magSf()
);
phir += phiP;
}
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{
volScalarField::Internal Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar("Sp", dgdt_.dimensions(), 0.0)
);
volScalarField::Internal Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh_
),
// Divergence term is handled explicitly to be
// consistent with the explicit transport solution
fvc::div(phi_)*min(alpha1, scalar(1))
);
forAll(dgdt_, celli)
{
if (dgdt_[celli] > 0.0)
{
Sp[celli] -= dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt_[celli] < 0.0)
{
Sp[celli] += dgdt_[celli]/max(alpha1[celli], 1e-4);
}
}
surfaceScalarField alphaPhic1
(
fvc::flux
(
phic,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
alpha1,
alpharScheme
)
);
surfaceScalarField::Boundary& alphaPhic1Bf =
alphaPhic1.boundaryFieldRef();
// Ensure that the flux at inflow BCs is preserved
forAll(alphaPhic1Bf, patchi)
{
fvsPatchScalarField& alphaPhic1p = alphaPhic1Bf[patchi];
if (!alphaPhic1p.coupled())
{
const scalarField& phi1p = phi1.boundaryField()[patchi];
const scalarField& alpha1p = alpha1.boundaryField()[patchi];
forAll(alphaPhic1p, facei)
{
if (phi1p[facei] < 0)
{
alphaPhic1p[facei] = alpha1p[facei]*phi1p[facei];
}
}
}
}
if (nAlphaSubCycles > 1)
{
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
surfaceScalarField alphaPhic10(alphaPhic1);
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi_,
alphaPhic10,
(alphaSubCycle.index()*Sp)(),
(Su - (alphaSubCycle.index() - 1)*Sp*alpha1)(),
phase1_.alphaMax(),
0
);
if (alphaSubCycle.index() == 1)
{
phase1_.alphaPhi() = alphaPhic10;
}
else
{
phase1_.alphaPhi() += alphaPhic10;
}
}
phase1_.alphaPhi() /= nAlphaSubCycles;
}
else
{
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi_,
alphaPhic1,
Sp,
Su,
phase1_.alphaMax(),
0
);
phase1_.alphaPhi() = alphaPhic1;
}
if (pPrimeByA_.valid())
{
fvScalarMatrix alpha1Eqn
(
fvm::ddt(alpha1) - fvc::ddt(alpha1)
- fvm::laplacian(alpha1alpha2f*pPrimeByA_(), alpha1, "bounded")
);
alpha1Eqn.relax();
alpha1Eqn.solve();
phase1_.alphaPhi() += alpha1Eqn.flux();
}
phase1_.alphaRhoPhi() =
fvc::interpolate(phase1_.rho())*phase1_.alphaPhi();
phase2_.alphaPhi() = phi_ - phase1_.alphaPhi();
alpha2 = scalar(1) - alpha1;
phase2_.alphaRhoPhi() =
fvc::interpolate(phase2_.rho())*phase2_.alphaPhi();
Info<< alpha1.name() << " volume fraction = "
<< alpha1.weightedAverage(mesh_.V()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
}
}
void Foam::twoPhaseSystem::correct()
{
phase1_.correct();
phase2_.correct();
}
void Foam::twoPhaseSystem::correctTurbulence()
{
phase1_.turbulence().correct();
phase2_.turbulence().correct();
}
bool Foam::twoPhaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
readOK &= phase1_.read(*this);
readOK &= phase2_.read(*this);
// models ...
return readOK;
}
else
{
return false;
}
}
const Foam::dragModel& Foam::twoPhaseSystem::drag(const phaseModel& phase) const
{
return drag_->phaseModel(phase);
}
const Foam::virtualMassModel&
Foam::twoPhaseSystem::virtualMass(const phaseModel& phase) const
{
return virtualMass_->phaseModel(phase);
}
const Foam::dimensionedScalar& Foam::twoPhaseSystem::sigma() const
{
return pair_->sigma();
}
// ************************************************************************* //