A new constraint patch has been added which permits AMI coupling in
cyclic geometries. The coupling is repeated with different multiples of
the cyclic transformation in order to achieve a full correspondence.
This allows, for example, a cylindrical AMI interface to be used in a
sector of a rotational geometry.
The patch is used in a similar manner to cyclicAMI, except that it has
an additional entry, "transformPatch". This entry must name a coupled
patch. The transformation used to repeat the AMI coupling is taken from
this patch. For example, in system/blockMeshDict:
boundary
(
cyclic1
{
type cyclic;
neighbourPatch cyclic2;
faces ( ... );
}
cyclic2
{
type cyclic;
neighbourPatch cyclic1;
faces ( ... );
}
cyclicRepeatAMI1
{
type cyclicRepeatAMI;
neighbourPatch cyclicRepeatAM2;
transformPatch cyclic1;
faces ( ... );
}
cyclicRepeatAMI2
{
type cyclicRepeatAMI;
neighbourPatch cyclicRepeatAMI1;
transformPatch cyclic1;
faces ( ... );
}
// other patches ...
);
In this example, the transformation between cyclic1 and cyclic2 is used
to define the repetition used by the two cyclicRepeatAMI patches.
Whether cyclic1 or cyclic2 is listed as the transform patch is not
important.
A tutorial, incompressible/pimpleFoam/RAS/impeller, has been added to
demonstrate the functionality. This contains two repeating AMI pairs;
one cylindrical and one planar.
A significant amount of maintenance has been carried out on the AMI and
ACMI patches as part of this work. The AMI methods now return
dimensionless weights by default, which prevents ambiguity over the
units of the weight field during construction. Large amounts of
duplicate code have also been removed by deriving ACMI classes from
their AMI equivalents. The reporting and writing of AMI weights has also
been unified.
This work was supported by Dr Victoria Suponitsky, at General Fusion
1050 lines
29 KiB
C
1050 lines
29 KiB
C
#include "PatchTools.H"
|
|
#include "checkGeometry.H"
|
|
#include "polyMesh.H"
|
|
#include "cellSet.H"
|
|
#include "faceSet.H"
|
|
#include "pointSet.H"
|
|
#include "EdgeMap.H"
|
|
#include "wedgePolyPatch.H"
|
|
#include "unitConversion.H"
|
|
#include "polyMeshTetDecomposition.H"
|
|
|
|
#include "vtkSurfaceWriter.H"
|
|
#include "writer.H"
|
|
|
|
#include "checkTools.H"
|
|
#include "cyclicAMIPolyPatch.H"
|
|
#include "Time.H"
|
|
|
|
// Find wedge with opposite orientation. Note: does not actually check that
|
|
// it is opposite, only that it has opposite normal and same axis
|
|
Foam::label Foam::findOppositeWedge
|
|
(
|
|
const polyMesh& mesh,
|
|
const wedgePolyPatch& wpp
|
|
)
|
|
{
|
|
const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
|
|
scalar wppCosAngle = wpp.cosAngle();
|
|
|
|
forAll(patches, patchi)
|
|
{
|
|
if
|
|
(
|
|
patchi != wpp.index()
|
|
&& patches[patchi].size()
|
|
&& isA<wedgePolyPatch>(patches[patchi])
|
|
)
|
|
{
|
|
const wedgePolyPatch& pp =
|
|
refCast<const wedgePolyPatch>(patches[patchi]);
|
|
|
|
// Calculate (cos of) angle to wpp (not pp!) centre normal
|
|
scalar ppCosAngle = wpp.centreNormal() & pp.n();
|
|
|
|
if
|
|
(
|
|
pp.size() == wpp.size()
|
|
&& mag(pp.axis() & wpp.axis()) >= (1-1e-3)
|
|
&& mag(ppCosAngle - wppCosAngle) >= 1e-3
|
|
)
|
|
{
|
|
return patchi;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
bool Foam::checkWedges
|
|
(
|
|
const polyMesh& mesh,
|
|
const bool report,
|
|
const Vector<label>& directions,
|
|
labelHashSet* setPtr
|
|
)
|
|
{
|
|
// To mark edges without calculating edge addressing
|
|
EdgeMap<label> edgesInError;
|
|
|
|
const pointField& p = mesh.points();
|
|
const faceList& fcs = mesh.faces();
|
|
|
|
|
|
const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
forAll(patches, patchi)
|
|
{
|
|
if (patches[patchi].size() && isA<wedgePolyPatch>(patches[patchi]))
|
|
{
|
|
const wedgePolyPatch& pp =
|
|
refCast<const wedgePolyPatch>(patches[patchi]);
|
|
|
|
scalar wedgeAngle = acos(pp.cosAngle());
|
|
|
|
if (report)
|
|
{
|
|
Info<< " Wedge " << pp.name() << " with angle "
|
|
<< radToDeg(wedgeAngle) << " degrees"
|
|
<< endl;
|
|
}
|
|
|
|
// Find opposite
|
|
label oppositePatchi = findOppositeWedge(mesh, pp);
|
|
|
|
if (oppositePatchi == -1)
|
|
{
|
|
if (report)
|
|
{
|
|
Info<< " ***Cannot find opposite wedge for wedge "
|
|
<< pp.name() << endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const wedgePolyPatch& opp =
|
|
refCast<const wedgePolyPatch>(patches[oppositePatchi]);
|
|
|
|
|
|
if (mag(opp.axis() & pp.axis()) < (1-1e-3))
|
|
{
|
|
if (report)
|
|
{
|
|
Info<< " ***Wedges do not have the same axis."
|
|
<< " Encountered " << pp.axis()
|
|
<< " on patch " << pp.name()
|
|
<< " which differs from " << opp.axis()
|
|
<< " on opposite wedge patch" << opp.axis()
|
|
<< endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// Mark edges on wedgePatches
|
|
forAll(pp, i)
|
|
{
|
|
const face& f = pp[i];
|
|
forAll(f, fp)
|
|
{
|
|
label p0 = f[fp];
|
|
label p1 = f.nextLabel(fp);
|
|
edgesInError.insert(edge(p0, p1), -1); // non-error value
|
|
}
|
|
}
|
|
|
|
|
|
// Check that wedge patch is flat
|
|
const point& p0 = p[pp.meshPoints()[0]];
|
|
forAll(pp.meshPoints(), i)
|
|
{
|
|
const point& pt = p[pp.meshPoints()[i]];
|
|
scalar d = mag((pt - p0) & pp.n());
|
|
|
|
if (d > rootSmall)
|
|
{
|
|
if (report)
|
|
{
|
|
Info<< " ***Wedge patch " << pp.name() << " not planar."
|
|
<< " Point " << pt << " is not in patch plane by "
|
|
<< d << " metre."
|
|
<< endl;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Check all non-wedge faces
|
|
label nEdgesInError = 0;
|
|
|
|
forAll(fcs, facei)
|
|
{
|
|
const face& f = fcs[facei];
|
|
|
|
forAll(f, fp)
|
|
{
|
|
label p0 = f[fp];
|
|
label p1 = f.nextLabel(fp);
|
|
if (p0 < p1)
|
|
{
|
|
vector d(p[p1]-p[p0]);
|
|
scalar magD = mag(d);
|
|
|
|
if (magD > rootVSmall)
|
|
{
|
|
d /= magD;
|
|
|
|
// Check how many empty directions are used by the edge.
|
|
label nEmptyDirs = 0;
|
|
label nNonEmptyDirs = 0;
|
|
for (direction cmpt=0; cmpt<vector::nComponents; cmpt++)
|
|
{
|
|
if (mag(d[cmpt]) > 1e-6)
|
|
{
|
|
if (directions[cmpt] == 0)
|
|
{
|
|
nEmptyDirs++;
|
|
}
|
|
else
|
|
{
|
|
nNonEmptyDirs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nEmptyDirs == 0)
|
|
{
|
|
// Purely in ok directions.
|
|
}
|
|
else if (nEmptyDirs == 1)
|
|
{
|
|
// Ok if purely in empty directions.
|
|
if (nNonEmptyDirs > 0)
|
|
{
|
|
if (edgesInError.insert(edge(p0, p1), facei))
|
|
{
|
|
nEdgesInError++;
|
|
}
|
|
}
|
|
}
|
|
else if (nEmptyDirs > 1)
|
|
{
|
|
// Always an error
|
|
if (edgesInError.insert(edge(p0, p1), facei))
|
|
{
|
|
nEdgesInError++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
label nErrorEdges = returnReduce(nEdgesInError, sumOp<label>());
|
|
|
|
if (nErrorEdges > 0)
|
|
{
|
|
if (report)
|
|
{
|
|
Info<< " ***Number of edges not aligned with or perpendicular to "
|
|
<< "non-empty directions: " << nErrorEdges << endl;
|
|
}
|
|
|
|
if (setPtr)
|
|
{
|
|
setPtr->resize(2*nEdgesInError);
|
|
forAllConstIter(EdgeMap<label>, edgesInError, iter)
|
|
{
|
|
if (iter() >= 0)
|
|
{
|
|
setPtr->insert(iter.key()[0]);
|
|
setPtr->insert(iter.key()[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if (report)
|
|
{
|
|
Info<< " All edges aligned with or perpendicular to "
|
|
<< "non-empty directions." << endl;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
namespace Foam
|
|
{
|
|
//- Default transformation behaviour for position
|
|
class transformPositionList
|
|
{
|
|
public:
|
|
|
|
//- Transform patch-based field
|
|
void operator()
|
|
(
|
|
const coupledPolyPatch& cpp,
|
|
List<pointField>& pts
|
|
) const
|
|
{
|
|
// Each element of pts is all the points in the face. Convert into
|
|
// lists of size cpp to transform.
|
|
|
|
List<pointField> newPts(pts.size());
|
|
forAll(pts, facei)
|
|
{
|
|
newPts[facei].setSize(pts[facei].size());
|
|
}
|
|
|
|
label index = 0;
|
|
while (true)
|
|
{
|
|
label n = 0;
|
|
|
|
// Extract for every face the i'th position
|
|
pointField ptsAtIndex(pts.size(), Zero);
|
|
forAll(cpp, facei)
|
|
{
|
|
const pointField& facePts = pts[facei];
|
|
if (facePts.size() > index)
|
|
{
|
|
ptsAtIndex[facei] = facePts[index];
|
|
n++;
|
|
}
|
|
}
|
|
|
|
if (n == 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
// Now ptsAtIndex will have for every face either zero or
|
|
// the position of the i'th vertex. Transform.
|
|
cpp.transformPosition(ptsAtIndex);
|
|
|
|
// Extract back from ptsAtIndex into newPts
|
|
forAll(cpp, facei)
|
|
{
|
|
pointField& facePts = newPts[facei];
|
|
if (facePts.size() > index)
|
|
{
|
|
facePts[index] = ptsAtIndex[facei];
|
|
}
|
|
}
|
|
|
|
index++;
|
|
}
|
|
|
|
pts.transfer(newPts);
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
bool Foam::checkCoupledPoints
|
|
(
|
|
const polyMesh& mesh,
|
|
const bool report,
|
|
labelHashSet* setPtr
|
|
)
|
|
{
|
|
const pointField& p = mesh.points();
|
|
const faceList& fcs = mesh.faces();
|
|
const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
|
|
// Zero'th point on coupled faces
|
|
//pointField nbrZeroPoint(fcs.size()-mesh.nInternalFaces(), vector::max);
|
|
List<pointField> nbrPoints(fcs.size() - mesh.nInternalFaces());
|
|
|
|
// Exchange zero point
|
|
forAll(patches, patchi)
|
|
{
|
|
if (patches[patchi].coupled())
|
|
{
|
|
const coupledPolyPatch& cpp = refCast<const coupledPolyPatch>
|
|
(
|
|
patches[patchi]
|
|
);
|
|
|
|
forAll(cpp, i)
|
|
{
|
|
label bFacei = cpp.start() + i - mesh.nInternalFaces();
|
|
const face& f = cpp[i];
|
|
nbrPoints[bFacei].setSize(f.size());
|
|
forAll(f, fp)
|
|
{
|
|
const point& p0 = p[f[fp]];
|
|
nbrPoints[bFacei][fp] = p0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
syncTools::syncBoundaryFaceList
|
|
(
|
|
mesh,
|
|
nbrPoints,
|
|
eqOp<pointField>(),
|
|
transformPositionList()
|
|
);
|
|
|
|
// Compare to local ones. Use same tolerance as for matching
|
|
label nErrorFaces = 0;
|
|
scalar avgMismatch = 0;
|
|
label nCoupledPoints = 0;
|
|
|
|
forAll(patches, patchi)
|
|
{
|
|
if (patches[patchi].coupled())
|
|
{
|
|
const coupledPolyPatch& cpp =
|
|
refCast<const coupledPolyPatch>(patches[patchi]);
|
|
|
|
if (cpp.owner())
|
|
{
|
|
scalarField smallDist
|
|
(
|
|
cpp.calcFaceTol
|
|
(
|
|
//cpp.matchTolerance(),
|
|
cpp,
|
|
cpp.points(),
|
|
cpp.faceCentres()
|
|
)
|
|
);
|
|
|
|
forAll(cpp, i)
|
|
{
|
|
label bFacei = cpp.start() + i - mesh.nInternalFaces();
|
|
const face& f = cpp[i];
|
|
|
|
if (f.size() != nbrPoints[bFacei].size())
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Local face size : " << f.size()
|
|
<< " does not equal neighbour face size : "
|
|
<< nbrPoints[bFacei].size()
|
|
<< abort(FatalError);
|
|
}
|
|
|
|
label fp = 0;
|
|
forAll(f, j)
|
|
{
|
|
const point& p0 = p[f[fp]];
|
|
scalar d = mag(p0 - nbrPoints[bFacei][j]);
|
|
|
|
if (d > smallDist[i])
|
|
{
|
|
if (setPtr)
|
|
{
|
|
setPtr->insert(cpp.start()+i);
|
|
}
|
|
nErrorFaces++;
|
|
|
|
break;
|
|
}
|
|
|
|
avgMismatch += d;
|
|
nCoupledPoints++;
|
|
|
|
fp = f.rcIndex(fp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
reduce(nErrorFaces, sumOp<label>());
|
|
reduce(avgMismatch, maxOp<scalar>());
|
|
reduce(nCoupledPoints, sumOp<label>());
|
|
|
|
if (nCoupledPoints > 0)
|
|
{
|
|
avgMismatch /= nCoupledPoints;
|
|
}
|
|
|
|
if (nErrorFaces > 0)
|
|
{
|
|
if (report)
|
|
{
|
|
Info<< " **Error in coupled point location: "
|
|
<< nErrorFaces
|
|
<< " faces have their 0th or consecutive vertex not opposite"
|
|
<< " their coupled equivalent. Average mismatch "
|
|
<< avgMismatch << "."
|
|
<< endl;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if (report)
|
|
{
|
|
Info<< " Coupled point location match (average "
|
|
<< avgMismatch << ") OK." << endl;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
void Foam::writeAMIWeightsSum
|
|
(
|
|
const polyMesh& mesh,
|
|
const primitivePatch& patch,
|
|
const scalarField& wghtSum,
|
|
const fileName& file
|
|
)
|
|
{
|
|
// Collect geometry
|
|
labelList pointToGlobal;
|
|
labelList uniqueMeshPointLabels;
|
|
autoPtr<globalIndex> globalPoints;
|
|
autoPtr<globalIndex> globalFaces;
|
|
faceList mergedFaces;
|
|
pointField mergedPoints;
|
|
Foam::PatchTools::gatherAndMerge
|
|
(
|
|
mesh,
|
|
patch.localFaces(),
|
|
patch.meshPoints(),
|
|
patch.meshPointMap(),
|
|
|
|
pointToGlobal,
|
|
uniqueMeshPointLabels,
|
|
globalPoints,
|
|
globalFaces,
|
|
|
|
mergedFaces,
|
|
mergedPoints
|
|
);
|
|
|
|
// Collect field
|
|
scalarField mergedWeights;
|
|
globalFaces().gather
|
|
(
|
|
UPstream::worldComm,
|
|
labelList(UPstream::procID(UPstream::worldComm)),
|
|
wghtSum,
|
|
mergedWeights
|
|
);
|
|
|
|
// Write the surface
|
|
if (Pstream::master())
|
|
{
|
|
vtkSurfaceWriter().write
|
|
(
|
|
file.path(),
|
|
file.name(),
|
|
mergedPoints,
|
|
mergedFaces,
|
|
"weightsSum",
|
|
mergedWeights,
|
|
false
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
void Foam::writeAMIWeightsSums(const polyMesh& mesh)
|
|
{
|
|
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
|
|
|
|
const word tmName(mesh.time().timeName());
|
|
|
|
forAll(pbm, patchi)
|
|
{
|
|
if (isA<cyclicAMIPolyPatch>(pbm[patchi]))
|
|
{
|
|
const cyclicAMIPolyPatch& cpp =
|
|
refCast<const cyclicAMIPolyPatch>(pbm[patchi]);
|
|
|
|
if (cpp.owner())
|
|
{
|
|
Info<< "Calculating AMI weights between owner patch: "
|
|
<< cpp.name() << " and neighbour patch: "
|
|
<< cpp.neighbPatch().name() << endl;
|
|
|
|
writeAMIWeightsSum
|
|
(
|
|
mesh,
|
|
cpp,
|
|
cpp.weightsSum(),
|
|
fileName("postProcessing") / "src_" + tmName
|
|
);
|
|
writeAMIWeightsSum
|
|
(
|
|
mesh,
|
|
cpp.neighbPatch(),
|
|
cpp.neighbWeightsSum(),
|
|
fileName("postProcessing") / "tgt_" + tmName
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Foam::label Foam::checkGeometry
|
|
(
|
|
const polyMesh& mesh,
|
|
const bool allGeometry,
|
|
const autoPtr<surfaceWriter>& surfWriter,
|
|
const autoPtr<writer<scalar>>& setWriter
|
|
)
|
|
{
|
|
label noFailedChecks = 0;
|
|
|
|
Info<< "\nChecking geometry..." << endl;
|
|
|
|
// Get a small relative length from the bounding box
|
|
const boundBox& globalBb = mesh.bounds();
|
|
|
|
Info<< " Overall domain bounding box "
|
|
<< globalBb.min() << " " << globalBb.max() << endl;
|
|
|
|
|
|
// Min length
|
|
scalar minDistSqr = magSqr(1e-6 * globalBb.span());
|
|
|
|
// Geometric directions
|
|
const Vector<label> validDirs = (mesh.geometricD() + Vector<label>::one)/2;
|
|
Info<< " Mesh has " << mesh.nGeometricD()
|
|
<< " geometric (non-empty/wedge) directions " << validDirs << endl;
|
|
|
|
// Solution directions
|
|
const Vector<label> solDirs = (mesh.solutionD() + Vector<label>::one)/2;
|
|
Info<< " Mesh has " << mesh.nSolutionD()
|
|
<< " solution (non-empty) directions " << solDirs << endl;
|
|
|
|
if (mesh.nGeometricD() < 3)
|
|
{
|
|
pointSet nonAlignedPoints(mesh, "nonAlignedEdges", mesh.nPoints()/100);
|
|
|
|
if
|
|
(
|
|
(
|
|
validDirs != solDirs
|
|
&& checkWedges(mesh, true, validDirs, &nonAlignedPoints)
|
|
)
|
|
|| (
|
|
validDirs == solDirs
|
|
&& mesh.checkEdgeAlignment(true, validDirs, &nonAlignedPoints)
|
|
)
|
|
)
|
|
{
|
|
noFailedChecks++;
|
|
label nNonAligned = returnReduce
|
|
(
|
|
nonAlignedPoints.size(),
|
|
sumOp<label>()
|
|
);
|
|
|
|
if (nNonAligned > 0)
|
|
{
|
|
Info<< " <<Writing " << nNonAligned
|
|
<< " points on non-aligned edges to set "
|
|
<< nonAlignedPoints.name() << endl;
|
|
nonAlignedPoints.instance() = mesh.pointsInstance();
|
|
nonAlignedPoints.write();
|
|
if (setWriter.valid())
|
|
{
|
|
mergeAndWrite(setWriter, nonAlignedPoints);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mesh.checkClosedBoundary(true)) noFailedChecks++;
|
|
|
|
{
|
|
cellSet cells(mesh, "nonClosedCells", mesh.nCells()/100+1);
|
|
cellSet aspectCells(mesh, "highAspectRatioCells", mesh.nCells()/100+1);
|
|
if
|
|
(
|
|
mesh.checkClosedCells
|
|
(
|
|
true,
|
|
&cells,
|
|
&aspectCells,
|
|
mesh.geometricD()
|
|
)
|
|
)
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nNonClosed = returnReduce(cells.size(), sumOp<label>());
|
|
|
|
if (nNonClosed > 0)
|
|
{
|
|
Info<< " <<Writing " << nNonClosed
|
|
<< " non closed cells to set " << cells.name() << endl;
|
|
cells.instance() = mesh.pointsInstance();
|
|
cells.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), cells);
|
|
}
|
|
}
|
|
}
|
|
|
|
label nHighAspect = returnReduce(aspectCells.size(), sumOp<label>());
|
|
|
|
if (nHighAspect > 0)
|
|
{
|
|
Info<< " <<Writing " << nHighAspect
|
|
<< " cells with high aspect ratio to set "
|
|
<< aspectCells.name() << endl;
|
|
aspectCells.instance() = mesh.pointsInstance();
|
|
aspectCells.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), aspectCells);
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
faceSet faces(mesh, "zeroAreaFaces", mesh.nFaces()/100+1);
|
|
if (mesh.checkFaceAreas(true, &faces))
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
if (nFaces > 0)
|
|
{
|
|
Info<< " <<Writing " << nFaces
|
|
<< " zero area faces to set " << faces.name() << endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
cellSet cells(mesh, "zeroVolumeCells", mesh.nCells()/100+1);
|
|
if (mesh.checkCellVolumes(true, &cells))
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nCells = returnReduce(cells.size(), sumOp<label>());
|
|
|
|
if (nCells > 0)
|
|
{
|
|
Info<< " <<Writing " << nCells
|
|
<< " zero volume cells to set " << cells.name() << endl;
|
|
cells.instance() = mesh.pointsInstance();
|
|
cells.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), cells);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
faceSet faces(mesh, "nonOrthoFaces", mesh.nFaces()/100+1);
|
|
if (mesh.checkFaceOrthogonality(true, &faces))
|
|
{
|
|
noFailedChecks++;
|
|
}
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
if (nFaces > 0)
|
|
{
|
|
Info<< " <<Writing " << nFaces
|
|
<< " non-orthogonal faces to set " << faces.name() << endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
faceSet faces(mesh, "wrongOrientedFaces", mesh.nFaces()/100 + 1);
|
|
if (mesh.checkFacePyramids(true, -small, &faces))
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
if (nFaces > 0)
|
|
{
|
|
Info<< " <<Writing " << nFaces
|
|
<< " faces with incorrect orientation to set "
|
|
<< faces.name() << endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
faceSet faces(mesh, "skewFaces", mesh.nFaces()/100+1);
|
|
if (mesh.checkFaceSkewness(true, &faces))
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
if (nFaces > 0)
|
|
{
|
|
Info<< " <<Writing " << nFaces
|
|
<< " skew faces to set " << faces.name() << endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
faceSet faces(mesh, "coupledFaces", mesh.nFaces()/100 + 1);
|
|
if (checkCoupledPoints(mesh, true, &faces))
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
if (nFaces > 0)
|
|
{
|
|
Info<< " <<Writing " << nFaces
|
|
<< " faces with incorrectly matched 0th (or consecutive)"
|
|
<< " vertex to set "
|
|
<< faces.name() << endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allGeometry)
|
|
{
|
|
faceSet faces(mesh, "lowQualityTetFaces", mesh.nFaces()/100+1);
|
|
if
|
|
(
|
|
polyMeshTetDecomposition::checkFaceTets
|
|
(
|
|
mesh,
|
|
polyMeshTetDecomposition::minTetQuality,
|
|
true,
|
|
&faces
|
|
)
|
|
)
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
if (nFaces > 0)
|
|
{
|
|
Info<< " <<Writing " << nFaces
|
|
<< " faces with low quality or negative volume "
|
|
<< "decomposition tets to set " << faces.name() << endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allGeometry)
|
|
{
|
|
// Note use of nPoints since don't want edge construction.
|
|
pointSet points(mesh, "shortEdges", mesh.nPoints()/1000 + 1);
|
|
if (mesh.checkEdgeLength(true, minDistSqr, &points))
|
|
{
|
|
//noFailedChecks++;
|
|
|
|
label nPoints = returnReduce(points.size(), sumOp<label>());
|
|
|
|
if (nPoints > 0)
|
|
{
|
|
Info<< " <<Writing " << nPoints
|
|
<< " points on short edges to set " << points.name()
|
|
<< endl;
|
|
points.instance() = mesh.pointsInstance();
|
|
points.write();
|
|
if (setWriter.valid())
|
|
{
|
|
mergeAndWrite(setWriter, points);
|
|
}
|
|
}
|
|
}
|
|
|
|
label nEdgeClose = returnReduce(points.size(), sumOp<label>());
|
|
|
|
if (mesh.checkPointNearness(false, minDistSqr, &points))
|
|
{
|
|
//noFailedChecks++;
|
|
|
|
label nPoints = returnReduce(points.size(), sumOp<label>());
|
|
|
|
if (nPoints > nEdgeClose)
|
|
{
|
|
pointSet nearPoints(mesh, "nearPoints", points);
|
|
Info<< " <<Writing " << nPoints
|
|
<< " near (closer than " << Foam::sqrt(minDistSqr)
|
|
<< " apart) points to set " << nearPoints.name() << endl;
|
|
nearPoints.instance() = mesh.pointsInstance();
|
|
nearPoints.write();
|
|
if (setWriter.valid())
|
|
{
|
|
mergeAndWrite(setWriter, nearPoints);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allGeometry)
|
|
{
|
|
faceSet faces(mesh, "concaveFaces", mesh.nFaces()/100 + 1);
|
|
if (mesh.checkFaceAngles(true, 10, &faces))
|
|
{
|
|
//noFailedChecks++;
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
if (nFaces > 0)
|
|
{
|
|
Info<< " <<Writing " << nFaces
|
|
<< " faces with concave angles to set " << faces.name()
|
|
<< endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allGeometry)
|
|
{
|
|
faceSet faces(mesh, "warpedFaces", mesh.nFaces()/100 + 1);
|
|
if (mesh.checkFaceFlatness(true, 0.8, &faces))
|
|
{
|
|
//noFailedChecks++;
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
if (nFaces > 0)
|
|
{
|
|
Info<< " <<Writing " << nFaces
|
|
<< " warped faces to set " << faces.name() << endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allGeometry)
|
|
{
|
|
cellSet cells(mesh, "underdeterminedCells", mesh.nCells()/100);
|
|
if (mesh.checkCellDeterminant(true, &cells))
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nCells = returnReduce(cells.size(), sumOp<label>());
|
|
|
|
Info<< " <<Writing " << nCells
|
|
<< " under-determined cells to set " << cells.name() << endl;
|
|
cells.instance() = mesh.pointsInstance();
|
|
cells.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), cells);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allGeometry)
|
|
{
|
|
cellSet cells(mesh, "concaveCells", mesh.nCells()/100);
|
|
if (mesh.checkConcaveCells(true, &cells))
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nCells = returnReduce(cells.size(), sumOp<label>());
|
|
|
|
Info<< " <<Writing " << nCells
|
|
<< " concave cells to set " << cells.name() << endl;
|
|
cells.instance() = mesh.pointsInstance();
|
|
cells.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), cells);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allGeometry)
|
|
{
|
|
faceSet faces(mesh, "lowWeightFaces", mesh.nFaces()/100);
|
|
if (mesh.checkFaceWeight(true, 0.05, &faces))
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
Info<< " <<Writing " << nFaces
|
|
<< " faces with low interpolation weights to set "
|
|
<< faces.name() << endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allGeometry)
|
|
{
|
|
faceSet faces(mesh, "lowVolRatioFaces", mesh.nFaces()/100);
|
|
if (mesh.checkVolRatio(true, 0.01, &faces))
|
|
{
|
|
noFailedChecks++;
|
|
|
|
label nFaces = returnReduce(faces.size(), sumOp<label>());
|
|
|
|
Info<< " <<Writing " << nFaces
|
|
<< " faces with low volume ratio cells to set "
|
|
<< faces.name() << endl;
|
|
faces.instance() = mesh.pointsInstance();
|
|
faces.write();
|
|
if (surfWriter.valid())
|
|
{
|
|
mergeAndWrite(surfWriter(), faces);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allGeometry)
|
|
{
|
|
writeAMIWeightsSums(mesh);
|
|
}
|
|
|
|
return noFailedChecks;
|
|
}
|