Files
OpenFOAM-12/applications/utilities/preProcessing/mapFields/mapLagrangian.C
Will Bainbridge e5cf0cf4ed Cloud: Accumulate warning messages associated with location failures
Warnings about initialisation of particles with locations outside of the
mesh and about the positional inaccuracy of NCC transfers are now
accumulated and printed once per time-step. This way, the log isn't
obscured by hundreds of such warnings.

Also, the pattern in which warnings are silenced after some arbitrary
number (typically 100) have been issued has been removed. This pattern
means that user viewing the log later in the run may be unaware that a
problem is still present. Accumulated warnings are concise enough that
they do not need to be silenced. They are generated every time-step, and
so remain visible throughout the log.
2023-09-19 10:57:11 +01:00

308 lines
10 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "MapLagrangianFields.H"
#include "passiveParticleCloud.H"
#include "meshSearch.H"
#include "OSspecific.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
static const scalar perturbFactor = 1e-6;
// Special version of findCell that generates a cell guaranteed to be
// compatible with tracking.
static label findCell(const Cloud<passiveParticle>& cloud, const point& pt)
{
label celli = -1;
label tetFacei = -1;
label tetPtI = -1;
const polyMesh& mesh = cloud.pMesh();
mesh.findCellFacePt(pt, celli, tetFacei, tetPtI);
if (celli >= 0)
{
return celli;
}
else
{
// See if particle on face by finding nearest face and shifting
// particle.
meshSearch meshSearcher
(
mesh,
polyMesh::FACE_PLANES // no decomposition needed
);
label facei = meshSearcher.findNearestBoundaryFace(pt);
if (facei >= 0)
{
const point& cc = mesh.cellCentres()[mesh.faceOwner()[facei]];
const point perturbPt = (1-perturbFactor)*pt+perturbFactor*cc;
mesh.findCellFacePt(perturbPt, celli, tetFacei, tetPtI);
return celli;
}
}
return -1;
}
void mapLagrangian(const meshToMesh0& meshToMesh0Interp)
{
// Determine which particles are in meshTarget
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// target to source cell map
const labelList& cellAddressing = meshToMesh0Interp.cellAddressing();
// Invert celladdressing to get source to target(s).
// Note: could use sparse addressing but that is too storage inefficient
// (Map<labelList>)
labelListList sourceToTargets
(
invertOneToMany(meshToMesh0Interp.fromMesh().nCells(), cellAddressing)
);
const fvMesh& meshSource = meshToMesh0Interp.fromMesh();
const fvMesh& meshTarget = meshToMesh0Interp.toMesh();
fileNameList cloudDirs
(
readDir
(
meshSource.time().timePath()/cloud::prefix,
fileType::directory
)
);
forAll(cloudDirs, cloudI)
{
// Search for list of lagrangian objects for this time
IOobjectList objects
(
meshSource,
meshSource.time().name(),
cloud::prefix/cloudDirs[cloudI]
);
IOobject* positionsPtr = objects.lookup("positions");
if (positionsPtr)
{
Info<< nl << " processing cloud " << cloudDirs[cloudI] << endl;
// Read positions & cell
passiveParticleCloud sourceParcels
(
meshSource,
cloudDirs[cloudI],
false
);
Info<< " read " << sourceParcels.size()
<< " parcels from source mesh." << endl;
// Construct empty target cloud
passiveParticleCloud targetParcels
(
meshTarget,
cloudDirs[cloudI],
IDLList<passiveParticle>()
);
passiveParticle::trackingData td(targetParcels);
label sourceParticleI = 0;
// Indices of source particles that get added to targetParcels
DynamicList<label> addParticles(sourceParcels.size());
// Unmapped particles
labelHashSet unmappedSource(sourceParcels.size());
// Initial: track from fine-mesh cell centre to particle position
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This requires there to be no boundary in the way.
forAllConstIter(Cloud<passiveParticle>, sourceParcels, iter)
{
bool foundCell = false;
// Assume that cell from read parcel is the correct one...
if (iter().cell() >= 0)
{
const labelList& targetCells =
sourceToTargets[iter().cell()];
// Particle probably in one of the targetcells. Try
// all by tracking from their cell centre to the parcel
// position.
forAll(targetCells, i)
{
// Track from its cellcentre to position to make sure.
autoPtr<passiveParticle> newPtr
(
new passiveParticle
(
meshTarget,
barycentric(1, 0, 0, 0),
targetCells[i],
meshTarget.cells()[targetCells[i]][0],
1
)
);
passiveParticle& newP = newPtr();
newP.track
(
meshTarget,
iter().position(meshSource)
- newP.position(meshTarget),
0
);
if (!newP.onFace())
{
// Hit position.
foundCell = true;
addParticles.append(sourceParticleI);
targetParcels.addParticle(newPtr.ptr());
break;
}
}
}
if (!foundCell)
{
// Store for closer analysis
unmappedSource.insert(sourceParticleI);
}
sourceParticleI++;
}
Info<< " after meshToMesh0 addressing found "
<< targetParcels.size()
<< " parcels in target mesh." << endl;
// Do closer inspection for unmapped particles
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (unmappedSource.size())
{
sourceParticleI = 0;
forAllIter(Cloud<passiveParticle>, sourceParcels, iter)
{
if (unmappedSource.found(sourceParticleI))
{
label targetCell =
findCell
(
targetParcels,
iter().position(meshSource)
);
if (targetCell >= 0)
{
label nLocateBoundaryHits = 0;
autoPtr<passiveParticle> pPtr
(
new passiveParticle
(
meshTarget,
iter().position(meshSource),
targetCell,
nLocateBoundaryHits
)
);
if (nLocateBoundaryHits == 0)
{
unmappedSource.erase(sourceParticleI);
addParticles.append(sourceParticleI);
targetParcels.addParticle(pPtr.ptr());
sourceParcels.remove(&iter());
}
}
}
sourceParticleI++;
}
}
addParticles.shrink();
Info<< " after additional mesh searching found "
<< targetParcels.size() << " parcels in target mesh." << endl;
if (addParticles.size())
{
IOPosition<passiveParticleCloud>(targetParcels).write();
// addParticles now contains the indices of the sourceMesh
// particles that were appended to the target mesh.
// Map lagrangian fields
// ~~~~~~~~~~~~~~~~~~~~~
MapLagrangianFields<label>
(cloudDirs[cloudI], objects, meshToMesh0Interp, addParticles);
MapLagrangianFields<scalar>
(cloudDirs[cloudI], objects, meshToMesh0Interp, addParticles);
MapLagrangianFields<vector>
(cloudDirs[cloudI], objects, meshToMesh0Interp, addParticles);
MapLagrangianFields<sphericalTensor>
(cloudDirs[cloudI], objects, meshToMesh0Interp, addParticles);
MapLagrangianFields<symmTensor>
(cloudDirs[cloudI], objects, meshToMesh0Interp, addParticles);
MapLagrangianFields<tensor>
(cloudDirs[cloudI], objects, meshToMesh0Interp, addParticles);
}
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //