566 lines
17 KiB
C++
566 lines
17 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration | Website: https://openfoam.org
|
|
\\ / A nd | Copyright (C) 2011-2020 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Class
|
|
Foam::basicThermo
|
|
|
|
Description
|
|
Base-class for fluid and solid thermodynamic properties.
|
|
|
|
The basicThermo class is the pure virtual interface, plus static data and
|
|
functions, including the selection table. It is default-constructable and
|
|
holds no non-static data.
|
|
|
|
The basicThermo::implementation class contains the class data, non-default
|
|
construction and other implementation details.
|
|
|
|
This structure allows for arbitrary mixing of the interfaces. Derived
|
|
levels should implement a similar separation of interface and
|
|
implementation. All interface classes should be default-constructable, and
|
|
should be inherited virtually into whatever interfaces are required.
|
|
Implementation classes should virtually inherit from their corresponding
|
|
interface class and *not* a lower level implementation class.
|
|
|
|
In derived levels that are complete enough to act as the base of a
|
|
thermodynamic instantiation, an additional *::composite sub class should be
|
|
defined, which (non-virtually) inherits from all the *::implementation
|
|
classes that it needs. This way, the composite class composes an interface
|
|
for which diamond patterns are resolved by virtual inheritance, whilst also
|
|
obtaining a single copy of all the implementation classes it needs to form
|
|
a complete implementation. The use of virtual inheritance does not result
|
|
in additional constructor calls propagating further down the hierarchy
|
|
(into heThermo and similar) because all virtually inherited interface
|
|
classes are default constructable.
|
|
|
|
SourceFiles
|
|
basicThermo.C
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#ifndef basicThermo_H
|
|
#define basicThermo_H
|
|
|
|
#include "volFields.H"
|
|
#include "typeInfo.H"
|
|
#include "IOdictionary.H"
|
|
#include "autoPtr.H"
|
|
#include "wordIOList.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
namespace Foam
|
|
{
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
Class basicThermo Declaration
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
class basicThermo
|
|
{
|
|
protected:
|
|
|
|
// Protected Static Member Functions
|
|
|
|
//- Lookup and the named field, or construct it as MUST-READ if it is
|
|
// not found, and return a reference
|
|
static volScalarField& lookupOrConstruct
|
|
(
|
|
const fvMesh& mesh,
|
|
const char* name
|
|
);
|
|
|
|
//- Get the constructor iterator for the given thermo dictionary and
|
|
// entries and constructor iterator table
|
|
template<class Thermo, class Table>
|
|
static typename Table::iterator lookupCstrIter
|
|
(
|
|
const dictionary& thermoTypeDict,
|
|
Table* tablePtr,
|
|
const int nCmpt,
|
|
const char* cmptNames[],
|
|
const word& thermoTypeName
|
|
);
|
|
|
|
//- Get the constructor iterator for the given thermo dictionary and
|
|
// constructor iterator table
|
|
template<class Thermo, class Table>
|
|
static typename Table::iterator lookupCstrIter
|
|
(
|
|
const dictionary& thermoDict,
|
|
Table* tablePtr
|
|
);
|
|
|
|
|
|
// Protected Member Functions
|
|
|
|
//- Return the enthalpy/internal energy field boundary types
|
|
// by interrogating the temperature field boundary types
|
|
wordList heBoundaryTypes();
|
|
|
|
//- Return the enthalpy/internal energy field boundary base types
|
|
// by interrogating the temperature field boundary types
|
|
wordList heBoundaryBaseTypes();
|
|
|
|
|
|
public:
|
|
|
|
// Public Classes
|
|
|
|
//- Forward declare the implementation class
|
|
class implementation;
|
|
|
|
|
|
// Static Member data
|
|
|
|
//- Name of the thermophysical properties dictionary
|
|
static const word dictName;
|
|
|
|
|
|
//- Runtime type information
|
|
TypeName("basicThermo");
|
|
|
|
|
|
//- Declare run-time constructor selection table
|
|
declareRunTimeSelectionTable
|
|
(
|
|
autoPtr,
|
|
basicThermo,
|
|
fvMesh,
|
|
(const fvMesh& mesh, const word& phaseName),
|
|
(mesh, phaseName)
|
|
);
|
|
|
|
|
|
// Static Member Functions
|
|
|
|
//- Return the name of a property for a given phase
|
|
static word phasePropertyName(const word& name, const word& phaseName)
|
|
{
|
|
return IOobject::groupName(name, phaseName);
|
|
}
|
|
|
|
//- Lookup the thermo associated with the given patch field
|
|
static const basicThermo& lookupThermo(const fvPatchScalarField& pf);
|
|
|
|
//- Split name of thermo package into a list of the components names
|
|
static wordList splitThermoName
|
|
(
|
|
const word& thermoName,
|
|
const int nCmpt
|
|
);
|
|
|
|
|
|
// Selectors
|
|
|
|
//- Generic New for each of the related thermodynamics packages
|
|
template<class Thermo>
|
|
static autoPtr<Thermo> New
|
|
(
|
|
const fvMesh&,
|
|
const word& phaseName=word::null
|
|
);
|
|
|
|
//- Generic New for each of the related thermodynamics packages
|
|
template<class Thermo>
|
|
static autoPtr<Thermo> New
|
|
(
|
|
const fvMesh&,
|
|
const dictionary&,
|
|
const word& phaseName=word::null
|
|
);
|
|
|
|
//- Specialisation of the Generic New for basicThermo
|
|
static autoPtr<basicThermo> New
|
|
(
|
|
const fvMesh&,
|
|
const word& phaseName=word::null
|
|
);
|
|
|
|
|
|
//- Destructor
|
|
virtual ~basicThermo();
|
|
|
|
|
|
// Member Functions
|
|
|
|
//- Return the dictionary
|
|
virtual const IOdictionary& properties() const = 0;
|
|
|
|
//- Access the dictionary
|
|
virtual IOdictionary& properties() = 0;
|
|
|
|
//- Return the phase name
|
|
virtual const word& phaseName() const = 0;
|
|
|
|
//- Return the name of a property for a given phase
|
|
word phasePropertyName(const word& name) const
|
|
{
|
|
return phasePropertyName(name, phaseName());
|
|
}
|
|
|
|
//- Check that the thermodynamics package is consistent
|
|
// with energy forms supported by the application
|
|
void validate
|
|
(
|
|
const string& app,
|
|
const word&
|
|
) const;
|
|
|
|
//- Check that the thermodynamics package is consistent
|
|
// with energy forms supported by the application
|
|
void validate
|
|
(
|
|
const string& app,
|
|
const word&,
|
|
const word&
|
|
) const;
|
|
|
|
//- Update properties
|
|
virtual void correct() = 0;
|
|
|
|
//- Return the name of the thermo physics
|
|
virtual word thermoName() const = 0;
|
|
|
|
//- Return true if the equation of state is incompressible
|
|
// i.e. rho != f(p)
|
|
virtual bool incompressible() const = 0;
|
|
|
|
//- Return true if the equation of state is isochoric
|
|
// i.e. rho = const
|
|
virtual bool isochoric() const = 0;
|
|
|
|
//- Should the dpdt term be included in the enthalpy equation
|
|
virtual Switch dpdt() const = 0;
|
|
|
|
|
|
// Access to thermodynamic state variables
|
|
|
|
//- Density [kg/m^3]
|
|
virtual tmp<volScalarField> rho() const = 0;
|
|
|
|
//- Density for patch [kg/m^3]
|
|
virtual tmp<scalarField> rho(const label patchi) const = 0;
|
|
|
|
//- Enthalpy/Internal energy [J/kg]
|
|
// Non-const access allowed for transport equations
|
|
virtual volScalarField& he() = 0;
|
|
|
|
//- Enthalpy/Internal energy [J/kg]
|
|
virtual const volScalarField& he() const = 0;
|
|
|
|
//- Enthalpy/Internal energy
|
|
// for given pressure and temperature [J/kg]
|
|
virtual tmp<volScalarField> he
|
|
(
|
|
const volScalarField& p,
|
|
const volScalarField& T
|
|
) const = 0;
|
|
|
|
//- Enthalpy/Internal energy for cell-set [J/kg]
|
|
virtual tmp<scalarField> he
|
|
(
|
|
const scalarField& T,
|
|
const labelList& cells
|
|
) const = 0;
|
|
|
|
//- Enthalpy/Internal energy for patch [J/kg]
|
|
virtual tmp<scalarField> he
|
|
(
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const = 0;
|
|
|
|
//- Sensible enthalpy [J/kg]
|
|
virtual tmp<volScalarField> hs() const = 0;
|
|
|
|
//- Sensible enthalpy
|
|
// for given pressure and temperature [J/kg]
|
|
virtual tmp<volScalarField> hs
|
|
(
|
|
const volScalarField& p,
|
|
const volScalarField& T
|
|
) const = 0;
|
|
|
|
//- Sensible enthalpy for cell-set [J/kg]
|
|
virtual tmp<scalarField> hs
|
|
(
|
|
const scalarField& T,
|
|
const labelList& cells
|
|
) const = 0;
|
|
|
|
//- Sensible enthalpy for patch [J/kg]
|
|
virtual tmp<scalarField> hs
|
|
(
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const = 0;
|
|
|
|
//- Absolute enthalpy [J/kg]
|
|
virtual tmp<volScalarField> ha() const = 0;
|
|
|
|
//- Absolute enthalpy
|
|
// for given pressure and temperature [J/kg]
|
|
virtual tmp<volScalarField> ha
|
|
(
|
|
const volScalarField& p,
|
|
const volScalarField& T
|
|
) const = 0;
|
|
|
|
//- Absolute enthalpy for cell-set [J/kg]
|
|
virtual tmp<scalarField> ha
|
|
(
|
|
const scalarField& T,
|
|
const labelList& cells
|
|
) const = 0;
|
|
|
|
//- Absolute enthalpy for patch [J/kg]
|
|
virtual tmp<scalarField> ha
|
|
(
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const = 0;
|
|
|
|
//- Enthalpy of formation [J/kg]
|
|
virtual tmp<volScalarField> hc() const = 0;
|
|
|
|
//- Temperature from enthalpy/internal energy for cell-set
|
|
virtual tmp<scalarField> THE
|
|
(
|
|
const scalarField& h,
|
|
const scalarField& T0, // starting temperature
|
|
const labelList& cells
|
|
) const = 0;
|
|
|
|
//- Temperature from enthalpy/internal energy for patch
|
|
virtual tmp<scalarField> THE
|
|
(
|
|
const scalarField& h,
|
|
const scalarField& T0, // starting temperature
|
|
const label patchi
|
|
) const = 0;
|
|
|
|
|
|
// Fields derived from thermodynamic state variables
|
|
|
|
//- Temperature [K]
|
|
virtual const volScalarField& T() const = 0;
|
|
|
|
//- Temperature [K]
|
|
// Non-const access allowed for transport equations
|
|
virtual volScalarField& T() = 0;
|
|
|
|
//- Heat capacity at constant pressure [J/kg/K]
|
|
virtual tmp<volScalarField> Cp() const = 0;
|
|
|
|
//- Heat capacity at constant pressure for patch [J/kg/K]
|
|
virtual tmp<scalarField> Cp
|
|
(
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const = 0;
|
|
|
|
//- Heat capacity at constant volume [J/kg/K]
|
|
virtual tmp<volScalarField> Cv() const = 0;
|
|
|
|
//- Heat capacity at constant volume for patch [J/kg/K]
|
|
virtual tmp<scalarField> Cv
|
|
(
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const = 0;
|
|
|
|
//- Heat capacity at constant pressure/volume [J/kg/K]
|
|
virtual tmp<volScalarField> Cpv() const = 0;
|
|
|
|
//- Heat capacity at constant pressure/volume for patch [J/kg/K]
|
|
virtual tmp<scalarField> Cpv
|
|
(
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const = 0;
|
|
|
|
//- Heat capacity ratio []
|
|
virtual tmp<volScalarField> CpByCpv() const = 0;
|
|
|
|
//- Heat capacity ratio for patch []
|
|
virtual tmp<scalarField> CpByCpv
|
|
(
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const = 0;
|
|
|
|
|
|
// Access to transport state variables
|
|
|
|
//- Thermal diffusivity for enthalpy of mixture [kg/m/s]
|
|
virtual const volScalarField& alpha() const = 0;
|
|
|
|
//- Thermal diffusivity for enthalpy of mixture for patch [kg/m/s]
|
|
virtual const scalarField& alpha(const label patchi) const = 0;
|
|
|
|
|
|
// Fields derived from transport state variables
|
|
|
|
//- Thermal diffusivity for temperature of mixture [W/m/K]
|
|
virtual tmp<volScalarField> kappa() const = 0;
|
|
|
|
//- Thermal diffusivity for temperature of mixture
|
|
// for patch [W/m/K]
|
|
virtual tmp<scalarField> kappa(const label patchi) const = 0;
|
|
|
|
//- Thermal diffusivity for energy of mixture [kg/m/s]
|
|
virtual tmp<volScalarField> alphahe() const = 0;
|
|
|
|
//- Thermal diffusivity for energy of mixture for patch [kg/m/s]
|
|
virtual tmp<scalarField> alphahe(const label patchi) const = 0;
|
|
};
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
Class basicThermo::implementation Declaration
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
class basicThermo::implementation
|
|
:
|
|
virtual public basicThermo,
|
|
public IOdictionary
|
|
{
|
|
protected:
|
|
|
|
// Protected data
|
|
|
|
//- Phase-name
|
|
const word& phaseName_;
|
|
|
|
|
|
// Fields
|
|
|
|
//- Temperature [K]
|
|
volScalarField T_;
|
|
|
|
//- Laminar thermal diffusivity [kg/m/s]
|
|
volScalarField alpha_;
|
|
|
|
|
|
//- Should the dpdt term be included in the enthalpy equation
|
|
Switch dpdt_;
|
|
|
|
|
|
public:
|
|
|
|
// Static Member data
|
|
|
|
//- Name of the thermophysical properties dictionary
|
|
using basicThermo::dictName;
|
|
|
|
|
|
// Constructors
|
|
|
|
//- Construct from mesh and phase name
|
|
implementation(const fvMesh&, const word& phaseName);
|
|
|
|
//- Construct from mesh, dictionary and phase name
|
|
implementation(const fvMesh&, const dictionary&, const word& phaseName);
|
|
|
|
//- Disallow default bitwise copy construction
|
|
implementation(const implementation&) = delete;
|
|
|
|
|
|
|
|
//- Destructor
|
|
virtual ~implementation();
|
|
|
|
|
|
// Member Functions
|
|
|
|
//- Return the dictionary
|
|
virtual const IOdictionary& properties() const
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
//- Access the dictionary
|
|
virtual IOdictionary& properties()
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
//- Phase-name
|
|
virtual const word& phaseName() const
|
|
{
|
|
return phaseName_;
|
|
}
|
|
|
|
//- Should the dpdt term be included in the enthalpy equation
|
|
virtual Switch dpdt() const
|
|
{
|
|
return dpdt_;
|
|
}
|
|
|
|
|
|
// Fields derived from thermodynamic state variables
|
|
|
|
//- Temperature [K]
|
|
virtual const volScalarField& T() const;
|
|
|
|
//- Temperature [K]
|
|
// Non-const access allowed for transport equations
|
|
virtual volScalarField& T();
|
|
|
|
|
|
// Access to transport state variables
|
|
|
|
//- Return the thermal diffusivity for enthalpy of mixture [kg/m/s]
|
|
virtual const volScalarField& alpha() const;
|
|
|
|
//- Return the thermal diffusivity for enthalpy of mixture for
|
|
// patch [kg/m/s]
|
|
virtual const scalarField& alpha(const label patchi) const;
|
|
|
|
|
|
//- Read thermophysical properties dictionary
|
|
virtual bool read();
|
|
|
|
|
|
// Member Operators
|
|
|
|
//- Disallow default bitwise assignment
|
|
void operator=(const implementation&) = delete;
|
|
};
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
} // End namespace Foam
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
#ifdef NoRepository
|
|
#include "basicThermoTemplates.C"
|
|
#endif
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
#endif
|
|
|
|
// ************************************************************************* //
|