The majority of input parameters now support automatic unit conversion.
Units are specified within square brackets, either before or after the
value. Primitive parameters (e.g., scalars, vectors, tensors, ...),
dimensioned types, fields, Function1-s and Function2-s all support unit
conversion in this way.
Unit conversion occurs on input only. OpenFOAM writes out all fields and
parameters in standard units. It is recommended to use '.orig' files in
the 0 directory to preserve user-readable input if those files are being
modified by pre-processing applications (e.g., setFields).
For example, to specify a volumetric flow rate inlet boundary in litres
per second [l/s], rather than metres-cubed per second [m^3/s], in 0/U:
boundaryField
{
inlet
{
type flowRateInletVelocity;
volumetricFlowRate 0.1 [l/s];
value $internalField;
}
...
}
Or, to specify the pressure field in bar, in 0/p:
internalField uniform 1 [bar];
Or, to convert the parameters of an Arrhenius reaction rate from a
cm-mol-kcal unit system, in constant/chemistryProperties:
reactions
{
methaneReaction
{
type irreversibleArrhenius;
reaction "CH4^0.2 + 2O2^1.3 = CO2 + 2H2O";
A 6.7e12 [(mol/cm^3)^-0.5/s];
beta 0;
Ea 48.4 [kcal/mol];
}
}
Or, to define a time-varying outlet pressure using a CSV file in which
the pressure column is in mega-pascals [MPa], in 0/p:
boundaryField
{
outlet
{
type uniformFixedValue;
value
{
type table;
format csv;
nHeaderLine 1;
units ([s] [MPa]); // <-- new units entry
columns (0 1);
mergeSeparators no;
file "data/pressure.csv";
outOfBounds clamp;
interpolationScheme linear;
}
}
...
}
(Note also that a new 'columns' entry replaces the old 'refColumn' and
'componentColumns'. This is is considered to be more intuitive, and has
a consistent syntax with the new 'units' entry. 'columns' and
'componentColumns' have been retained for backwards compatibility and
will continue to work for the time being.)
Unit definitions can be added in the global or case controlDict files.
See UnitConversions in $WM_PROJECT_DIR/etc/controlDict for examples.
Currently available units include:
Standard: kg m s K kmol A Cd
Derived: Hz N Pa J W g um mm cm km l ml us ms min hr mol
rpm bar atm kPa MPa cal kcal cSt cP % rad rot deg
A user-time unit is also provided if user-time is in operation. This
allows it to be specified locally whether a parameter relates to
real-time or to user-time. For example, to define a mass source that
ramps up from a given engine-time (in crank-angle-degrees [CAD]) over a
duration in real-time, in constant/fvModels:
massSource1
{
type massSource;
points ((1 2 3));
massFlowRate
{
type scale;
scale linearRamp;
start 20 [CAD];
duration 50 [ms];
value 0.1 [g/s];
}
}
Specified units will be checked against the parameter's dimensions where
possible, and an error generated if they are not consistent. For the
dimensions to be available for this check, the code requires
modification, and work propagating this change across OpenFOAM is
ongoing. Unit conversions are still possible without these changes, but
the validity of such conversions will not be checked.
Units are no longer permitted in 'dimensions' entries in field files.
These 'dimensions' entries can now, instead, take the names of
dimensions. The names of the available dimensions are:
Standard: mass length time temperature
moles current luminousIntensity
Derived: area volume rate velocity momentum acceleration density
force energy power pressure kinematicPressure
compressibility gasConstant specificHeatCapacity
kinematicViscosity dynamicViscosity thermalConductivity
volumetricFlux massFlux
So, for example, a 0/epsilon file might specify the dimensions as
follows:
dimensions [energy/mass/time];
And a 0/alphat file might have:
dimensions [thermalConductivity/specificHeatCapacity];
*** Development Notes ***
A unit conversion can construct trivially from a dimension set,
resulting in a "standard" unit with a conversion factor of one. This
means the functions which perform unit conversion on read can be
provided dimension sets or unit conversion objects interchangeably.
A basic `dict.lookup<vector>("Umean")` call will do unit conversion, but
it does not know the parameter's dimensions, so it cannot check the
validity of the supplied units. A corresponding lookup function has been
added in which the dimensions or units can be provided; in this case the
corresponding call would be `dict.lookup<vector>("Umean", dimVelocity)`.
This function enables additional checking and should be used wherever
possible.
Function1-s and Function2-s have had their constructors and selectors
changed so that dimensions/units must be specified by calling code. In
the case of Function1, two unit arguments must be given; one for the
x-axis and one for the value-axis. For Function2-s, three must be
provided.
In some cases, it is desirable (or at least established practice), that
a given non-standard unit be used in the absence of specific
user-defined units. Commonly this includes reading angles in degrees
(rather than radians) and reading times in user-time (rather than
real-time). The primitive lookup functions and Function1 and Function2
selectors both support specifying a non-standard default unit. For
example, `theta_ = dict.lookup<scalar>("theta", unitDegrees)` will read
an angle in degrees by default. If this is done within a model which
also supports writing then the write call must be modified accordingly
so that the data is also written out in degrees. Overloads of writeEntry
have been created for this purpose. In this case, the angle theta should
be written out with `writeEntry(os, "theta", unitDegrees, theta_)`.
Function1-s and Function2-s behave similarly, but with greater numbers
of dimensions/units arguments as before.
The non-standard user-time unit can be accessed by a `userUnits()`
method that has been added to Time. Use of this user-time unit in the
construction of Function1-s should prevent the need for explicit
user-time conversion in boundary conditions and sub-models and similar.
Some models might contain non-typed stream-based lookups of the form
`dict.lookup("p0") >> p0_` (e.g., in a re-read method), or
`Umean_(dict.lookup("Umean"))` (e.g., in an initialiser list). These
calls cannot facilitate unit conversion and are therefore discouraged.
They should be replaced with
`p0_ = dict.lookup<scalar>("p0", dimPressure)` and
`Umean_(dict.lookup<vector>("Umean", dimVelocity))` and similar whenever
they are found.
523 lines
16 KiB
C++
523 lines
16 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration | Website: https://openfoam.org
|
|
\\ / A nd | Copyright (C) 2011-2024 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
polyDualMesh
|
|
|
|
Description
|
|
Calculates the dual of a polyMesh. Adheres to all the feature and patch
|
|
edges.
|
|
|
|
Usage
|
|
\b polyDualMesh featureAngle
|
|
|
|
Detects any boundary edge > angle and creates multiple boundary faces
|
|
for it. Normal behaviour is to have each point become a cell
|
|
(1.5 behaviour)
|
|
|
|
Options:
|
|
- \par -concaveMultiCells
|
|
Creates multiple cells for each point on a concave edge. Might limit
|
|
the amount of distortion on some meshes.
|
|
|
|
- \par -splitAllFaces
|
|
Normally only constructs a single face between two cells. This single
|
|
face might be too distorted. splitAllFaces will create a single face for
|
|
every original cell the face passes through. The mesh will thus have
|
|
multiple faces in between two cells! (so is not strictly
|
|
upper-triangular anymore - checkMesh will complain)
|
|
|
|
- \par -doNotPreserveFaceZones:
|
|
By default all faceZones are preserved by marking all faces, edges and
|
|
points on them as features. The -doNotPreserveFaceZones disables this
|
|
behaviour.
|
|
|
|
Note:
|
|
It is just a driver for meshDualiser. Substitute your own
|
|
simpleMarkFeatures to have different behaviour.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "Time.H"
|
|
#include "fvMesh.H"
|
|
#include "polyTopoChange.H"
|
|
#include "polyTopoChangeMap.H"
|
|
#include "PackedBoolList.H"
|
|
#include "meshTools.H"
|
|
#include "OFstream.H"
|
|
#include "meshDualiser.H"
|
|
|
|
using namespace Foam;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
// Naive feature detection. All boundary edges with angle > featureAngle become
|
|
// feature edges. All points on feature edges become feature points. All
|
|
// boundary faces become feature faces.
|
|
void simpleMarkFeatures
|
|
(
|
|
const polyMesh& mesh,
|
|
const PackedBoolList& isBoundaryEdge,
|
|
const scalar featureAngle,
|
|
const bool concaveMultiCells,
|
|
const bool doNotPreserveFaceZones,
|
|
|
|
labelList& featureFaces,
|
|
labelList& featureEdges,
|
|
labelList& singleCellFeaturePoints,
|
|
labelList& multiCellFeaturePoints
|
|
)
|
|
{
|
|
const scalar minCos = Foam::cos(featureAngle);
|
|
|
|
const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
|
|
// Working sets
|
|
labelHashSet featureEdgeSet;
|
|
labelHashSet singleCellFeaturePointSet;
|
|
labelHashSet multiCellFeaturePointSet;
|
|
|
|
|
|
// 1. Mark all edges between patches
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
forAll(patches, patchi)
|
|
{
|
|
const polyPatch& pp = patches[patchi];
|
|
const labelList& meshEdges = pp.meshEdges();
|
|
|
|
// All patch corner edges. These need to be feature points & edges!
|
|
for (label edgeI = pp.nInternalEdges(); edgeI < pp.nEdges(); edgeI++)
|
|
{
|
|
label meshEdgeI = meshEdges[edgeI];
|
|
featureEdgeSet.insert(meshEdgeI);
|
|
singleCellFeaturePointSet.insert(mesh.edges()[meshEdgeI][0]);
|
|
singleCellFeaturePointSet.insert(mesh.edges()[meshEdgeI][1]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// 2. Mark all geometric feature edges
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// Make distinction between convex features where the boundary point becomes
|
|
// a single cell and concave features where the boundary point becomes
|
|
// multiple 'half' cells.
|
|
|
|
// Addressing for all outside faces
|
|
primitivePatch allBoundary
|
|
(
|
|
SubList<face>
|
|
(
|
|
mesh.faces(),
|
|
mesh.nFaces()-mesh.nInternalFaces(),
|
|
mesh.nInternalFaces()
|
|
),
|
|
mesh.points()
|
|
);
|
|
|
|
// Check for non-manifold points (surface pinched at point)
|
|
allBoundary.checkPointManifold(false, &singleCellFeaturePointSet);
|
|
|
|
// Check for non-manifold edges (surface pinched at edge)
|
|
const labelListList& edgeFaces = allBoundary.edgeFaces();
|
|
const labelList& meshPoints = allBoundary.meshPoints();
|
|
|
|
forAll(edgeFaces, edgeI)
|
|
{
|
|
const labelList& eFaces = edgeFaces[edgeI];
|
|
|
|
if (eFaces.size() > 2)
|
|
{
|
|
const edge& e = allBoundary.edges()[edgeI];
|
|
|
|
// Info<< "Detected non-manifold boundary edge:" << edgeI
|
|
// << " coords:"
|
|
// << allBoundary.points()[meshPoints[e[0]]]
|
|
// << allBoundary.points()[meshPoints[e[1]]] << endl;
|
|
|
|
singleCellFeaturePointSet.insert(meshPoints[e[0]]);
|
|
singleCellFeaturePointSet.insert(meshPoints[e[1]]);
|
|
}
|
|
}
|
|
|
|
// Check for features.
|
|
forAll(edgeFaces, edgeI)
|
|
{
|
|
const labelList& eFaces = edgeFaces[edgeI];
|
|
|
|
if (eFaces.size() == 2)
|
|
{
|
|
label f0 = eFaces[0];
|
|
label f1 = eFaces[1];
|
|
|
|
// check angle
|
|
const vector& n0 = allBoundary.faceNormals()[f0];
|
|
const vector& n1 = allBoundary.faceNormals()[f1];
|
|
|
|
if ((n0 & n1) < minCos)
|
|
{
|
|
const edge& e = allBoundary.edges()[edgeI];
|
|
label v0 = meshPoints[e[0]];
|
|
label v1 = meshPoints[e[1]];
|
|
|
|
label meshEdgeI = meshTools::findEdge(mesh, v0, v1);
|
|
featureEdgeSet.insert(meshEdgeI);
|
|
|
|
// Check if convex or concave by looking at angle
|
|
// between face centres and normal
|
|
vector c1c0
|
|
(
|
|
allBoundary[f1].centre(allBoundary.points())
|
|
- allBoundary[f0].centre(allBoundary.points())
|
|
);
|
|
|
|
if (concaveMultiCells && (c1c0 & n0) > small)
|
|
{
|
|
// Found concave edge. Make into multiCell features
|
|
Info<< "Detected concave feature edge:" << edgeI
|
|
<< " cos:" << (c1c0 & n0)
|
|
<< " coords:"
|
|
<< allBoundary.points()[v0]
|
|
<< allBoundary.points()[v1]
|
|
<< endl;
|
|
|
|
singleCellFeaturePointSet.erase(v0);
|
|
multiCellFeaturePointSet.insert(v0);
|
|
singleCellFeaturePointSet.erase(v1);
|
|
multiCellFeaturePointSet.insert(v1);
|
|
}
|
|
else
|
|
{
|
|
// Convex. singleCell feature.
|
|
if (!multiCellFeaturePointSet.found(v0))
|
|
{
|
|
singleCellFeaturePointSet.insert(v0);
|
|
}
|
|
if (!multiCellFeaturePointSet.found(v1))
|
|
{
|
|
singleCellFeaturePointSet.insert(v1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// 3. Mark all feature faces
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
// Face centres that need inclusion in the dual mesh
|
|
labelHashSet featureFaceSet(mesh.nFaces()-mesh.nInternalFaces());
|
|
// A. boundary faces.
|
|
for (label facei = mesh.nInternalFaces(); facei < mesh.nFaces(); facei++)
|
|
{
|
|
featureFaceSet.insert(facei);
|
|
}
|
|
|
|
// B. face zones.
|
|
const faceZoneList& faceZones = mesh.faceZones();
|
|
|
|
if (doNotPreserveFaceZones)
|
|
{
|
|
if (faceZones.size() > 0)
|
|
{
|
|
WarningInFunction
|
|
<< "Detected " << faceZones.size()
|
|
<< " faceZones. These will not be preserved."
|
|
<< endl;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (faceZones.size() > 0)
|
|
{
|
|
Info<< "Detected " << faceZones.size()
|
|
<< " faceZones. Preserving these by marking their"
|
|
<< " points, edges and faces as features." << endl;
|
|
}
|
|
|
|
forAll(faceZones, zoneI)
|
|
{
|
|
const faceZone& fz = faceZones[zoneI];
|
|
|
|
Info<< "Inserting all faces in faceZone " << fz.name()
|
|
<< " as features." << endl;
|
|
|
|
forAll(fz, i)
|
|
{
|
|
label facei = fz[i];
|
|
const face& f = mesh.faces()[facei];
|
|
const labelList& fEdges = mesh.faceEdges()[facei];
|
|
|
|
featureFaceSet.insert(facei);
|
|
forAll(f, fp)
|
|
{
|
|
// Mark point as multi cell point (since both sides of
|
|
// face should have different cells)
|
|
singleCellFeaturePointSet.erase(f[fp]);
|
|
multiCellFeaturePointSet.insert(f[fp]);
|
|
|
|
// Make sure there are points on the edges.
|
|
featureEdgeSet.insert(fEdges[fp]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transfer to arguments
|
|
featureFaces = featureFaceSet.toc();
|
|
featureEdges = featureEdgeSet.toc();
|
|
singleCellFeaturePoints = singleCellFeaturePointSet.toc();
|
|
multiCellFeaturePoints = multiCellFeaturePointSet.toc();
|
|
}
|
|
|
|
|
|
// Dump features to .obj files
|
|
void dumpFeatures
|
|
(
|
|
const polyMesh& mesh,
|
|
const labelList& featureFaces,
|
|
const labelList& featureEdges,
|
|
const labelList& singleCellFeaturePoints,
|
|
const labelList& multiCellFeaturePoints
|
|
)
|
|
{
|
|
{
|
|
OFstream str("featureFaces.obj");
|
|
Info<< "Dumping centres of featureFaces to obj file " << str.name()
|
|
<< endl;
|
|
forAll(featureFaces, i)
|
|
{
|
|
meshTools::writeOBJ(str, mesh.faceCentres()[featureFaces[i]]);
|
|
}
|
|
}
|
|
{
|
|
OFstream str("featureEdges.obj");
|
|
Info<< "Dumping featureEdges to obj file " << str.name() << endl;
|
|
label vertI = 0;
|
|
|
|
forAll(featureEdges, i)
|
|
{
|
|
const edge& e = mesh.edges()[featureEdges[i]];
|
|
meshTools::writeOBJ(str, mesh.points()[e[0]]);
|
|
vertI++;
|
|
meshTools::writeOBJ(str, mesh.points()[e[1]]);
|
|
vertI++;
|
|
str<< "l " << vertI-1 << ' ' << vertI << nl;
|
|
}
|
|
}
|
|
{
|
|
OFstream str("singleCellFeaturePoints.obj");
|
|
Info<< "Dumping featurePoints that become a single cell to obj file "
|
|
<< str.name() << endl;
|
|
forAll(singleCellFeaturePoints, i)
|
|
{
|
|
meshTools::writeOBJ(str, mesh.points()[singleCellFeaturePoints[i]]);
|
|
}
|
|
}
|
|
{
|
|
OFstream str("multiCellFeaturePoints.obj");
|
|
Info<< "Dumping featurePoints that become multiple cells to obj file "
|
|
<< str.name() << endl;
|
|
forAll(multiCellFeaturePoints, i)
|
|
{
|
|
meshTools::writeOBJ(str, mesh.points()[multiCellFeaturePoints[i]]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
#include "addOverwriteOption.H"
|
|
argList::noParallel();
|
|
|
|
argList::validArgs.append("featureAngle [0-180]");
|
|
argList::addBoolOption
|
|
(
|
|
"splitAllFaces",
|
|
"have multiple faces in between cells"
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"concaveMultiCells",
|
|
"split cells on concave boundary edges into multiple cells"
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"doNotPreserveFaceZones",
|
|
"disable the default behaviour of preserving faceZones by having"
|
|
" multiple faces in between cells"
|
|
);
|
|
|
|
#include "setRootCase.H"
|
|
#include "createTime.H"
|
|
#include "createMeshNoChangers.H"
|
|
|
|
const word oldInstance = mesh.pointsInstance();
|
|
|
|
// Mark boundary edges and points.
|
|
// (Note: in 1.4.2 we can use the built-in mesh point ordering
|
|
// facility instead)
|
|
PackedBoolList isBoundaryEdge(mesh.nEdges());
|
|
for (label facei = mesh.nInternalFaces(); facei < mesh.nFaces(); facei++)
|
|
{
|
|
const labelList& fEdges = mesh.faceEdges()[facei];
|
|
|
|
forAll(fEdges, i)
|
|
{
|
|
isBoundaryEdge.set(fEdges[i], 1);
|
|
}
|
|
}
|
|
|
|
const scalar featureAngle = degToRad(args.argRead<scalar>(1));
|
|
const scalar minCos = Foam::cos(featureAngle);
|
|
|
|
Info<< "Feature:" << radToDeg(featureAngle) << endl
|
|
<< "minCos :" << minCos << endl
|
|
<< endl;
|
|
|
|
|
|
const bool splitAllFaces = args.optionFound("splitAllFaces");
|
|
if (splitAllFaces)
|
|
{
|
|
Info<< "Splitting all internal faces to create multiple faces"
|
|
<< " between two cells." << nl
|
|
<< endl;
|
|
}
|
|
|
|
const bool overwrite = args.optionFound("overwrite");
|
|
const bool doNotPreserveFaceZones = args.optionFound
|
|
(
|
|
"doNotPreserveFaceZones"
|
|
);
|
|
const bool concaveMultiCells = args.optionFound("concaveMultiCells");
|
|
if (concaveMultiCells)
|
|
{
|
|
Info<< "Generating multiple cells for points on concave feature edges."
|
|
<< nl << endl;
|
|
}
|
|
|
|
|
|
mesh.cellZones().clear();
|
|
mesh.pointZones().clear();
|
|
|
|
if (doNotPreserveFaceZones)
|
|
{
|
|
mesh.faceZones().clear();
|
|
}
|
|
|
|
// Face(centre)s that need inclusion in the dual mesh
|
|
labelList featureFaces;
|
|
// Edge(centre)s ,,
|
|
labelList featureEdges;
|
|
// Points (that become a single cell) that need inclusion in the dual mesh
|
|
labelList singleCellFeaturePoints;
|
|
// Points (that become a multiple cells) ,,
|
|
labelList multiCellFeaturePoints;
|
|
|
|
// Sample implementation of feature detection.
|
|
simpleMarkFeatures
|
|
(
|
|
mesh,
|
|
isBoundaryEdge,
|
|
featureAngle,
|
|
concaveMultiCells,
|
|
doNotPreserveFaceZones,
|
|
|
|
featureFaces,
|
|
featureEdges,
|
|
singleCellFeaturePoints,
|
|
multiCellFeaturePoints
|
|
);
|
|
|
|
mesh.faceZones().clear();
|
|
|
|
// If we want to split all polyMesh faces into one dualface per cell
|
|
// we are passing through we also need a point
|
|
// at the polyMesh facecentre and edgemid of the faces we want to
|
|
// split.
|
|
if (splitAllFaces)
|
|
{
|
|
featureEdges = identityMap(mesh.nEdges());
|
|
featureFaces = identityMap(mesh.nFaces());
|
|
}
|
|
|
|
// Write obj files for debugging
|
|
dumpFeatures
|
|
(
|
|
mesh,
|
|
featureFaces,
|
|
featureEdges,
|
|
singleCellFeaturePoints,
|
|
multiCellFeaturePoints
|
|
);
|
|
|
|
|
|
// Topo change container
|
|
polyTopoChange meshMod(mesh.boundaryMesh().size());
|
|
|
|
// Mesh dualiser engine
|
|
meshDualiser dualMaker(mesh);
|
|
|
|
// Insert all commands into polyTopoChange to create dual of mesh. This does
|
|
// all the hard work.
|
|
dualMaker.setRefinement
|
|
(
|
|
splitAllFaces,
|
|
featureFaces,
|
|
featureEdges,
|
|
singleCellFeaturePoints,
|
|
multiCellFeaturePoints,
|
|
meshMod
|
|
);
|
|
|
|
// Create mesh, return map from old to new mesh.
|
|
autoPtr<polyTopoChangeMap> map = meshMod.changeMesh(mesh);
|
|
|
|
// Update mesh objects
|
|
mesh.topoChange(map);
|
|
|
|
if (!overwrite)
|
|
{
|
|
runTime++;
|
|
}
|
|
else
|
|
{
|
|
mesh.setInstance(oldInstance);
|
|
}
|
|
|
|
Info<< "Writing dual mesh to " << runTime.name() << endl;
|
|
|
|
mesh.write();
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|