Files
OpenFOAM-12/applications/solvers/combustion/PDRFoam/PDRFoamAutoRefine.C
Henry 93732c8af4 Updated the whole of OpenFOAM to use the new templated TurbulenceModels library
The old separate incompressible and compressible libraries have been removed.

Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model.  Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only.  If they prove to
be generally useful they can be templated for compressible and
multiphase application.

The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.

The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff.  This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.

For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.

All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.

All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.

Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics.  Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models.  I hope this brings benefits to all OpenFOAM users.

Henry G. Weller
2015-01-21 19:21:39 +00:00

211 lines
6.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
PDRFoam
Description
Solver for compressible premixed/partially-premixed combustion with
turbulence modelling.
Combusting RANS code using the b-Xi two-equation model.
Xi may be obtained by either the solution of the Xi transport
equation or from an algebraic exression. Both approaches are
based on Gulder's flame speed correlation which has been shown
to be appropriate by comparison with the results from the
spectral model.
Strain effects are incorporated directly into the Xi equation
but not in the algebraic approximation. Further work need to be
done on this issue, particularly regarding the enhanced removal rate
caused by flame compression. Analysis using results of the spectral
model will be required.
For cases involving very lean Propane flames or other flames which are
very strain-sensitive, a transport equation for the laminar flame
speed is present. This equation is derived using heuristic arguments
involving the strain time scale and the strain-rate at extinction.
the transport velocity is the same as that for the Xi equation.
For large flames e.g. explosions additional modelling for the flame
wrinkling due to surface instabilities may be applied.
PDR (porosity/distributed resistance) modelling is included to handle
regions containing blockages which cannot be resolved by the mesh.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "psiuReactionThermo.H"
#include "turbulentFluidThermoModel.H"
#include "laminarFlameSpeed.H"
#include "XiModel.H"
#include "PDRDragModel.H"
#include "ignition.H"
#include "Switch.H"
#include "bound.H"
#include "dynamicRefineFvMesh.H"
#include "pimpleControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "readCombustionProperties.H"
#include "readGravitationalAcceleration.H"
#include "createFields.H"
#include "initContinuityErrs.H"
#include "readTimeControls.H"
#include "compressibleCourantNo.H"
#include "setInitialDeltaT.H"
pimpleControl pimple(mesh);
scalar StCoNum = 0.0;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
bool hasChanged = false;
while (runTime.run())
{
#include "readTimeControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
// Indicators for refinement. Note: before runTime++
// only for postprocessing reasons.
tmp<volScalarField> tmagGradP = mag(fvc::grad(p));
volScalarField normalisedGradP
(
"normalisedGradP",
tmagGradP()/max(tmagGradP())
);
normalisedGradP.writeOpt() = IOobject::AUTO_WRITE;
tmagGradP.clear();
runTime++;
Info<< "\n\nTime = " << runTime.timeName() << endl;
{
// Make the fluxes absolute
fvc::makeAbsolute(phi, rho, U);
// Test : disable refinement for some cells
PackedBoolList& protectedCell =
refCast<dynamicRefineFvMesh>(mesh).protectedCell();
if (protectedCell.empty())
{
protectedCell.setSize(mesh.nCells());
protectedCell = 0;
}
forAll(betav, cellI)
{
if (betav[cellI] < 0.99)
{
protectedCell[cellI] = 1;
}
}
// Flux estimate for introduced faces.
volVectorField rhoU("rhoU", rho*U);
// Do any mesh changes
bool meshChanged = mesh.update();
if (meshChanged)
{
hasChanged = true;
}
if (runTime.write() && hasChanged)
{
betav.write();
Lobs.write();
CT.write();
drag->writeFields();
flameWrinkling->writeFields();
hasChanged = false;
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, rho, U);
}
#include "rhoEqn.H"
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "UEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "bEqn.H"
#include "ftEqn.H"
#include "huEqn.H"
#include "hEqn.H"
if (!ign.ignited())
{
hu == h;
}
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
runTime.write();
Info<< "\nExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n" << endl;
}
Info<< "\n end\n";
return 0;
}
// ************************************************************************* //