Files
OpenFOAM-12/applications/utilities/postProcessing/miscellaneous/execFlowFunctionObjects/execFlowFunctionObjects.C
Henry Weller 9a536b02a7 fvOptions: Reorganized and updated to simplify use in sub-models and maintenance
fvOptions are transferred to the database on construction using
fv::options::New which returns a reference.  The same function can be
use for construction and lookup so that fvOptions are now entirely
demand-driven.

The abstract base-classes for fvOptions now reside in the finiteVolume
library simplifying compilation and linkage.  The concrete
implementations of fvOptions are still in the single monolithic
fvOptions library but in the future this will be separated into smaller
libraries based on application area which may be linked at run-time in
the same manner as functionObjects.
2015-12-02 11:49:52 +00:00

492 lines
13 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
execFlowFunctionObjects
Description
Execute the set of functionObjects specified in the selected dictionary
(which defaults to system/controlDict) for the selected set of times.
Alternative dictionaries should be placed in the system/ directory.
The flow (p-U) and optionally turbulence fields are available for the
function objects to operate on allowing forces and other related properties
to be calculated in addition to cutting planes etc.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "timeSelector.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "pointFields.H"
#include "uniformDimensionedFields.H"
#include "ReadFields.H"
#include "fvOptions.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "turbulentFluidThermoModel.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Read all fields of type. Returns names of fields read. Guarantees all
// processors to read fields in same order.
template<class GeoField>
wordList ReadUniformFields
(
const IOobjectList& objects,
PtrList<GeoField>& fields,
const bool syncPar
)
{
// Search list of objects for wanted type
IOobjectList fieldObjects(objects.lookupClass(GeoField::typeName));
wordList masterNames(fieldObjects.names());
if (syncPar && Pstream::parRun())
{
// Check that I have the same fields as the master
const wordList localNames(masterNames);
Pstream::scatter(masterNames);
HashSet<word> localNamesSet(localNames);
forAll(masterNames, i)
{
const word& masterFld = masterNames[i];
HashSet<word>::iterator iter = localNamesSet.find(masterFld);
if (iter == localNamesSet.end())
{
FatalErrorInFunction
<< "Fields not synchronised across processors." << endl
<< "Master has fields " << masterNames
<< " processor " << Pstream::myProcNo()
<< " has fields " << localNames << exit(FatalError);
}
else
{
localNamesSet.erase(iter);
}
}
forAllConstIter(HashSet<word>, localNamesSet, iter)
{
FatalErrorInFunction
<< "Fields not synchronised across processors." << endl
<< "Master has fields " << masterNames
<< " processor " << Pstream::myProcNo()
<< " has fields " << localNames << exit(FatalError);
}
}
fields.setSize(masterNames.size());
// Make sure to read in masterNames order.
forAll(masterNames, i)
{
Info<< "Reading " << GeoField::typeName << ' ' << masterNames[i]
<< endl;
const IOobject& io = *fieldObjects[masterNames[i]];
fields.set
(
i,
new GeoField
(
IOobject
(
io.name(),
io.instance(),
io.local(),
io.db(),
IOobject::MUST_READ,
IOobject::AUTO_WRITE,
io.registerObject()
)
)
);
}
return masterNames;
}
void calc
(
const argList& args,
const Time& runTime,
const fvMesh& mesh,
functionObjectList& fol
)
{
if (args.optionFound("noFlow"))
{
Info<< " Operating in no-flow mode; no models will be loaded."
<< " All vol, surface and point fields will be loaded." << endl;
// Read objects in time directory
IOobjectList objects(mesh, runTime.timeName());
// Read vol fields.
PtrList<volScalarField> vsFlds;
ReadFields(mesh, objects, vsFlds);
PtrList<volVectorField> vvFlds;
ReadFields(mesh, objects, vvFlds);
PtrList<volSphericalTensorField> vstFlds;
ReadFields(mesh, objects, vstFlds);
PtrList<volSymmTensorField> vsymtFlds;
ReadFields(mesh, objects, vsymtFlds);
PtrList<volTensorField> vtFlds;
ReadFields(mesh, objects, vtFlds);
// Read vol-internal fields.
PtrList<volScalarField::DimensionedInternalField> vsiFlds;
ReadFields(mesh, objects, vsiFlds);
PtrList<volVectorField::DimensionedInternalField> vviFlds;
ReadFields(mesh, objects, vviFlds);
PtrList<volSphericalTensorField::DimensionedInternalField> vstiFlds;
ReadFields(mesh, objects, vstiFlds);
PtrList<volSymmTensorField::DimensionedInternalField> vsymtiFlds;
ReadFields(mesh, objects, vsymtiFlds);
PtrList<volTensorField::DimensionedInternalField> vtiFlds;
ReadFields(mesh, objects, vtiFlds);
// Read surface fields.
PtrList<surfaceScalarField> ssFlds;
ReadFields(mesh, objects, ssFlds);
PtrList<surfaceVectorField> svFlds;
ReadFields(mesh, objects, svFlds);
PtrList<surfaceSphericalTensorField> sstFlds;
ReadFields(mesh, objects, sstFlds);
PtrList<surfaceSymmTensorField> ssymtFlds;
ReadFields(mesh, objects, ssymtFlds);
PtrList<surfaceTensorField> stFlds;
ReadFields(mesh, objects, stFlds);
// Read point fields.
const pointMesh& pMesh = pointMesh::New(mesh);
PtrList<pointScalarField> psFlds;
ReadFields(pMesh, objects, psFlds);
PtrList<pointVectorField> pvFlds;
ReadFields(pMesh, objects, pvFlds);
PtrList<pointSphericalTensorField> pstFlds;
ReadFields(pMesh, objects, pstFlds);
PtrList<pointSymmTensorField> psymtFlds;
ReadFields(pMesh, objects, psymtFlds);
PtrList<pointTensorField> ptFlds;
ReadFields(pMesh, objects, ptFlds);
// Read uniform dimensioned fields
IOobjectList constantObjects(mesh, runTime.constant());
PtrList<uniformDimensionedScalarField> usFlds;
ReadUniformFields(constantObjects, usFlds, true);
PtrList<uniformDimensionedVectorField> uvFlds;
ReadUniformFields(constantObjects, uvFlds, true);
PtrList<uniformDimensionedSphericalTensorField> ustFlds;
ReadUniformFields(constantObjects, ustFlds, true);
PtrList<uniformDimensionedSymmTensorField> usymmtFlds;
ReadUniformFields(constantObjects, usymmtFlds, true);
PtrList<uniformDimensionedTensorField> utFlds;
ReadUniformFields(constantObjects, utFlds, true);
fol.execute(true);
}
else
{
Info<< " Reading phi" << endl;
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::MUST_READ
),
mesh
);
Info<< " Reading U" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ
),
mesh
);
Info<< " Reading p" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ
),
mesh
);
if (phi.dimensions() == dimVolume/dimTime)
{
IOobject turbulencePropertiesHeader
(
"turbulenceProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
);
if (turbulencePropertiesHeader.headerOk())
{
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulenceModel
(
incompressible::turbulenceModel::New
(
U,
phi,
laminarTransport
)
);
fol.execute(true);
}
else
{
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
fol.execute(true);
}
}
else if (phi.dimensions() == dimMass/dimTime)
{
autoPtr<fluidThermo> thermo(fluidThermo::New(mesh));
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh
),
thermo->rho()
);
IOobject turbulencePropertiesHeader
(
"turbulenceProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
);
if (turbulencePropertiesHeader.headerOk())
{
autoPtr<compressible::turbulenceModel> turbulenceModel
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo()
)
);
fol.execute(true);
}
else
{
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
fol.execute(true);
}
}
else
{
FatalErrorInFunction
<< "Incorrect dimensions of phi: " << phi.dimensions()
<< nl << exit(FatalError);
}
}
}
autoPtr<functionObjectList> readFunctionObjects
(
const argList& args,
const Time& runTime,
dictionary& folDict
)
{
autoPtr<functionObjectList> folPtr;
if (args.optionFound("dict"))
{
folDict = IOdictionary
(
IOobject
(
args["dict"],
runTime,
IOobject::MUST_READ_IF_MODIFIED
)
);
folPtr.reset(new functionObjectList(runTime, folDict));
}
else
{
folPtr.reset(new functionObjectList(runTime));
}
folPtr->start();
return folPtr;
}
int main(int argc, char *argv[])
{
Foam::timeSelector::addOptions();
#include "addRegionOption.H"
Foam::argList::addBoolOption
(
"noFlow",
"suppress creating flow models"
);
#include "addDictOption.H"
#include "setRootCase.H"
#include "createTime.H"
Foam::instantList timeDirs = Foam::timeSelector::select0(runTime, args);
#include "createNamedMesh.H"
// Externally stored dictionary for functionObjectList
// if not constructed from runTime
dictionary folDict;
// Construct functionObjectList
autoPtr<functionObjectList> folPtr
(
readFunctionObjects(args, runTime, folDict)
);
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
if (mesh.readUpdate() != polyMesh::UNCHANGED)
{
// Update functionObjectList if mesh changes
folPtr = readFunctionObjects(args, runTime, folDict);
}
FatalIOError.throwExceptions();
try
{
calc(args, runTime, mesh, folPtr());
}
catch (IOerror& err)
{
Warning<< err << endl;
}
Info<< endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //