Files
OpenFOAM-12/applications/modules/multiphaseEuler/phaseSystems/phaseModel/phaseModel/phaseModel.H
Will Bainbridge 4acddc6ab0 solidThermo: Add rhoThermo interface
The old fluid-specific rhoThermo has been split into a non-fluid
specific part which is still called rhoThermo, and a fluid-specific part
called rhoFluidThermo. The rhoThermo interface has been added to the
solidThermo model. This permits models and solvers that access the
density to operate on both solid and fluid thermophysical models.
2023-07-27 09:20:43 +01:00

399 lines
12 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2015-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::phaseModel
SourceFiles
phaseModel.C
\*---------------------------------------------------------------------------*/
#ifndef phaseModel_H
#define phaseModel_H
#include "dictionary.H"
#include "dimensionedScalar.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "fvMatricesFwd.H"
#include "rhoFluidThermo.H"
#include "runTimeSelectionTables.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class phaseSystem;
class diameterModel;
/*---------------------------------------------------------------------------*\
Class phaseModel Declaration
\*---------------------------------------------------------------------------*/
class phaseModel
:
public volScalarField
{
// Private Data
//- Reference to the phaseSystem to which this phase belongs
const phaseSystem& fluid_;
//- Name of phase
word name_;
//- Index of phase
label index_;
//- Return the residual phase-fraction for given phase
// Used to stabilise the phase momentum as the phase-fraction -> 0
dimensionedScalar residualAlpha_;
//- Optional maximum phase-fraction (e.g. packing limit)
scalar alphaMax_;
//- Diameter model
autoPtr<diameterModel> diameterModel_;
public:
//- Runtime type information
ClassName("phaseModel");
// Declare runtime construction
declareRunTimeSelectionTable
(
autoPtr,
phaseModel,
phaseSystem,
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
),
(fluid, phaseName, referencePhase, index)
);
// Constructors
phaseModel
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
);
//- Return clone
autoPtr<phaseModel> clone() const;
// Selectors
static autoPtr<phaseModel> New
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
);
//- Return a pointer to a new phase created on freestore
// from Istream
class iNew
{
const phaseSystem& fluid_;
const word& referencePhaseName_;
mutable label indexCounter_;
public:
iNew
(
const phaseSystem& fluid,
const word& referencePhaseName
)
:
fluid_(fluid),
referencePhaseName_(referencePhaseName),
indexCounter_(-1)
{}
autoPtr<phaseModel> operator()(Istream& is) const
{
indexCounter_++;
const word phaseName(is);
return autoPtr<phaseModel>
(
phaseModel::New
(
fluid_,
phaseName,
phaseName == referencePhaseName_,
indexCounter_
)
);
}
};
//- Destructor
virtual ~phaseModel();
// Member Functions
//- Return the name of this phase
const word& name() const;
//- Return the name of the phase for use as the keyword in PtrDictionary
const word& keyword() const;
//- Return the index of the phase
label index() const;
//- Return the system to which this phase belongs
const phaseSystem& fluid() const;
//- Return the residual phase-fraction for given phase
// Used to stabilise the phase momentum as the phase-fraction -> 0
const dimensionedScalar& residualAlpha() const;
//- Return the maximum phase-fraction (e.g. packing limit)
scalar alphaMax() const;
//- Return the Sauter-mean diameter
tmp<volScalarField> d() const;
//- Return const-reference to diameterModel of the phase
const autoPtr<diameterModel>& dPtr() const;
//- Correct the phase properties
virtual void correct();
//- Correct the continuity error
virtual void correctContinuityError(const volScalarField& source);
//- Correct the kinematics
virtual void correctKinematics();
//- Correct the thermodynamics
virtual void correctThermo();
//- Correct the reactions
virtual void correctReactions();
//- Correct the species concentrations
virtual void correctSpecies();
//- Predict the momentumTransport
virtual void predictMomentumTransport();
//- Predict the energy transport
virtual void predictThermophysicalTransport();
//- Correct the momentumTransport
virtual void correctMomentumTransport();
//- Correct the energy transport
virtual void correctThermophysicalTransport();
//- Correct the face velocity for moving meshes
virtual void correctUf();
//- Ensure that the flux at inflow/outflow BCs is preserved
void correctInflowOutflow(surfaceScalarField& alphaPhi) const;
//- Read phase properties dictionary
virtual bool read();
// Density variation and compressibility
//- Return true if the phase is incompressible otherwise false
virtual bool incompressible() const = 0;
//- Return true if the phase is constant density otherwise false
virtual bool isochoric() const = 0;
//- Return the phase dilatation rate (d(alpha)/dt + div(alpha*phi))
virtual const autoPtr<volScalarField>& divU() const = 0;
//- Set the phase dilatation rate (d(alpha)/dt + div(alpha*phi))
virtual void divU(tmp<volScalarField> divU) = 0;
// Thermo
//- Return the thermophysical model
virtual const rhoFluidThermo& thermo() const = 0;
//- Access the thermophysical model
virtual rhoFluidThermo& thermo() = 0;
//- Return the density field
virtual const volScalarField& rho() const = 0;
//- Access the density field
virtual volScalarField& rho() = 0;
//- Return whether the phase is isothermal
virtual bool isothermal() const = 0;
//- Return the enthalpy equation
virtual tmp<fvScalarMatrix> heEqn() = 0;
// Species
//- Return whether the phase is pure (i.e., not multi-component)
virtual bool pure() const = 0;
//- Return the species fraction equation
virtual tmp<fvScalarMatrix> YiEqn(volScalarField& Yi) = 0;
//- Return the species mass fractions
virtual const PtrList<volScalarField>& Y() const = 0;
//- Return a species mass fraction by name
virtual const volScalarField& Y(const word& name) const = 0;
//- Access the species mass fractions
virtual PtrList<volScalarField>& YRef() = 0;
//- Return the active species mass fractions
virtual const UPtrList<volScalarField>& YActive() const = 0;
//- Access the active species mass fractions
virtual UPtrList<volScalarField>& YActiveRef() = 0;
//- Return the fuel consumption rate matrix
virtual tmp<fvScalarMatrix> R(volScalarField& Yi) const = 0;
// Momentum
//- Return whether the phase is stationary
virtual bool stationary() const = 0;
//- Return the momentum equation
virtual tmp<fvVectorMatrix> UEqn() = 0;
//- Return the momentum equation for the face-based algorithm
virtual tmp<fvVectorMatrix> UfEqn() = 0;
//- Return the velocity
virtual tmp<volVectorField> U() const = 0;
//- Access the velocity
virtual volVectorField& URef() = 0;
//- Access the velocity
virtual const volVectorField& URef() const = 0;
//- Return the volumetric flux
virtual tmp<surfaceScalarField> phi() const = 0;
//- Access the volumetric flux
virtual surfaceScalarField& phiRef() = 0;
//- Access the volumetric flux
virtual const surfaceScalarField& phiRef() const = 0;
//- Return the face velocity
// Required for moving mesh cases
virtual const autoPtr<surfaceVectorField>& Uf() const = 0;
//- Access the face velocity
// Required for moving mesh cases
virtual surfaceVectorField& UfRef() = 0;
//- Access the face velocity
// Required for moving mesh cases
virtual const surfaceVectorField& UfRef() const = 0;
//- Return the volumetric flux of the phase
virtual tmp<surfaceScalarField> alphaPhi() const = 0;
//- Access the volumetric flux of the phase
virtual surfaceScalarField& alphaPhiRef() = 0;
//- Access the volumetric flux of the phase
virtual const surfaceScalarField& alphaPhiRef() const = 0;
//- Return the mass flux of the phase
virtual tmp<surfaceScalarField> alphaRhoPhi() const = 0;
//- Access the mass flux of the phase
virtual surfaceScalarField& alphaRhoPhiRef() = 0;
//- Access the mass flux of the phase
virtual const surfaceScalarField& alphaRhoPhiRef() const = 0;
//- Return the substantive acceleration
virtual tmp<volVectorField> DUDt() const = 0;
//- Return the substantive acceleration on the faces
virtual tmp<surfaceScalarField> DUDtf() const = 0;
//- Return the continuity error
virtual tmp<volScalarField> continuityError() const = 0;
//- Return the phase kinetic energy
virtual tmp<volScalarField> K() const = 0;
// Transport
//- Effective thermal turbulent conductivity
// of mixture for patch [W/m/K]
virtual tmp<scalarField> kappaEff(const label patchi) const = 0;
//- Return the turbulent kinetic energy
virtual tmp<volScalarField> k() const = 0;
//- Return the phase-pressure'
// (derivative of phase-pressure w.r.t. phase-fraction)
virtual tmp<volScalarField> pPrime() const = 0;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //