Files
OpenFOAM-12/applications/modules/multiphaseEuler/phaseSystems/phaseModel/phaseModel/phaseModel.H
Will Bainbridge a05df4abe0 populationBalance: Standardise default field handling
Population balance size-group fraction 'f<index>.<phase>' fields are now
read from an 'fDefault.<phase>' field if they are not provided
explicitly. This is the same process as is applied to species fractions
or fvDOM rays. The sum-of-fs field 'f.<phase>' is no longer required.

The value of a fraction field and its boundary conditions must now be
specified in the corresponding field file. Value entries are no longer
given in the size group dictionaries in the constant/phaseProperties
file, and an error message will be generated if a value entry is found.

The fraction fields are now numbered programatically, rather than being
named. So, the size-group dictionaries do not require a name any more.

All of the above is also true for any 'kappa<index>.<phase>' fields that
are constructed and solved for as part of a fractal shape model.

The following is an example of a specification of a population balance
with two phases in it:

    populationBalances (bubbles);

    air1
    {
        type            pureIsothermalPhaseModel;
        diameterModel   velocityGroup;
        velocityGroupCoeffs
        {
            populationBalance bubbles;
            shapeModel      spherical;
            sizeGroups
            (
                { dSph 1e-3; } // Size-group #0: Fraction field f0.air1
                { dSph 2e-3; } // ...
                { dSph 3e-3; }
                { dSph 4e-3; }
                { dSph 5e-3; }
            );
        }
        residualAlpha   1e-6;
    }

    air2
    {
        type            pureIsothermalPhaseModel;
        diameterModel   velocityGroup;
        velocityGroupCoeffs
        {
            populationBalance bubbles;
            shapeModel      spherical;
            sizeGroups
            (
                { dSph 6e-3; } // Size-group #5: Fraction field f5.air2
                { dSph 7e-3; } // ...
                { dSph 8e-3; }
                { dSph 9e-3; }
                { dSph 10e-3; }
                { dSph 11e-3; }
                { dSph 12e-3; }
            );
        }
        residualAlpha   1e-6;
    }

Previously a fraction field was constructed automatically using the
boundary condition types from the sum-of-fs field, and the value of both
the internal and boundary field was then overridden by the value setting
provided for the size-group. This procedure doesn't generalise to
boundary conditions other than basic types that store no additional
data, like zeroGradient and fixedValue. More complex boundary conditions
such as inletOutlet and uniformFixedValue are incompatible with this
approach.

This is arguably less convenient than the previous specification, where
the sizes and fractions appeared together in a table-like list in the
sizeGroups entry. In the event that a substantial proportion of the
size-groups have a non-zero initial fraction, writing out all the field
files manually is extremely tedious. To mitigate this somewhat, a
packaged function has been added to initialise the fields given a file
containing a size distribution (see the pipeBend tutorial for an example
of its usage). This function has the same limitations as the previous
code in that it requires all boundary conditions to be default
constructable.

Ultimately, the "correct" fix for the issue of how to set the boundary
conditions conveniently is to create customised inlet-outlet boundary
conditions that determine their field's position within the population
balance and evaluate a distribution to determine the appropriate inlet
value. This work is pending funding.
2023-08-31 12:05:12 +01:00

399 lines
12 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2015-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::phaseModel
SourceFiles
phaseModel.C
\*---------------------------------------------------------------------------*/
#ifndef phaseModel_H
#define phaseModel_H
#include "dictionary.H"
#include "dimensionedScalar.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "fvMatricesFwd.H"
#include "rhoFluidThermo.H"
#include "runTimeSelectionTables.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class phaseSystem;
class diameterModel;
/*---------------------------------------------------------------------------*\
Class phaseModel Declaration
\*---------------------------------------------------------------------------*/
class phaseModel
:
public volScalarField
{
// Private Data
//- Reference to the phaseSystem to which this phase belongs
const phaseSystem& fluid_;
//- Name of phase
word name_;
//- Index of phase
label index_;
//- Return the residual phase-fraction for given phase
// Used to stabilise the phase momentum as the phase-fraction -> 0
dimensionedScalar residualAlpha_;
//- Optional maximum phase-fraction (e.g. packing limit)
scalar alphaMax_;
//- Diameter model
autoPtr<diameterModel> diameterModel_;
public:
//- Runtime type information
ClassName("phaseModel");
// Declare runtime construction
declareRunTimeSelectionTable
(
autoPtr,
phaseModel,
phaseSystem,
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
),
(fluid, phaseName, referencePhase, index)
);
// Constructors
phaseModel
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
);
//- Return clone
autoPtr<phaseModel> clone() const;
// Selectors
static autoPtr<phaseModel> New
(
const phaseSystem& fluid,
const word& phaseName,
const bool referencePhase,
const label index
);
//- Return a pointer to a new phase created on freestore
// from Istream
class iNew
{
const phaseSystem& fluid_;
const word& referencePhaseName_;
mutable label indexCounter_;
public:
iNew
(
const phaseSystem& fluid,
const word& referencePhaseName
)
:
fluid_(fluid),
referencePhaseName_(referencePhaseName),
indexCounter_(-1)
{}
autoPtr<phaseModel> operator()(Istream& is) const
{
indexCounter_++;
const word phaseName(is);
return autoPtr<phaseModel>
(
phaseModel::New
(
fluid_,
phaseName,
phaseName == referencePhaseName_,
indexCounter_
)
);
}
};
//- Destructor
virtual ~phaseModel();
// Member Functions
//- Return the name of this phase
const word& name() const;
//- Return the name of the phase for use as the keyword in PtrDictionary
const word& keyword() const;
//- Return the index of the phase
label index() const;
//- Return the system to which this phase belongs
const phaseSystem& fluid() const;
//- Return the residual phase-fraction for given phase
// Used to stabilise the phase momentum as the phase-fraction -> 0
const dimensionedScalar& residualAlpha() const;
//- Return the maximum phase-fraction (e.g. packing limit)
scalar alphaMax() const;
//- Return the Sauter-mean diameter
tmp<volScalarField> d() const;
//- Return a reference to the diameterModel of the phase
const diameterModel& diameter() const;
//- Correct the phase properties
virtual void correct();
//- Correct the continuity error
virtual void correctContinuityError(const volScalarField& source);
//- Correct the kinematics
virtual void correctKinematics();
//- Correct the thermodynamics
virtual void correctThermo();
//- Correct the reactions
virtual void correctReactions();
//- Correct the species concentrations
virtual void correctSpecies();
//- Predict the momentumTransport
virtual void predictMomentumTransport();
//- Predict the energy transport
virtual void predictThermophysicalTransport();
//- Correct the momentumTransport
virtual void correctMomentumTransport();
//- Correct the energy transport
virtual void correctThermophysicalTransport();
//- Correct the face velocity for moving meshes
virtual void correctUf();
//- Ensure that the flux at inflow/outflow BCs is preserved
void correctInflowOutflow(surfaceScalarField& alphaPhi) const;
//- Read phase properties dictionary
virtual bool read();
// Density variation and compressibility
//- Return true if the phase is incompressible otherwise false
virtual bool incompressible() const = 0;
//- Return true if the phase is constant density otherwise false
virtual bool isochoric() const = 0;
//- Return the phase dilatation rate (d(alpha)/dt + div(alpha*phi))
virtual const autoPtr<volScalarField>& divU() const = 0;
//- Set the phase dilatation rate (d(alpha)/dt + div(alpha*phi))
virtual void divU(tmp<volScalarField> divU) = 0;
// Thermo
//- Return the thermophysical model
virtual const rhoFluidThermo& thermo() const = 0;
//- Access the thermophysical model
virtual rhoFluidThermo& thermo() = 0;
//- Return the density field
virtual const volScalarField& rho() const = 0;
//- Access the density field
virtual volScalarField& rho() = 0;
//- Return whether the phase is isothermal
virtual bool isothermal() const = 0;
//- Return the enthalpy equation
virtual tmp<fvScalarMatrix> heEqn() = 0;
// Species
//- Return whether the phase is pure (i.e., not multi-component)
virtual bool pure() const = 0;
//- Return the species fraction equation
virtual tmp<fvScalarMatrix> YiEqn(volScalarField& Yi) = 0;
//- Return the species mass fractions
virtual const PtrList<volScalarField>& Y() const = 0;
//- Return a species mass fraction by name
virtual const volScalarField& Y(const word& name) const = 0;
//- Access the species mass fractions
virtual PtrList<volScalarField>& YRef() = 0;
//- Return the active species mass fractions
virtual const UPtrList<volScalarField>& YActive() const = 0;
//- Access the active species mass fractions
virtual UPtrList<volScalarField>& YActiveRef() = 0;
//- Return the fuel consumption rate matrix
virtual tmp<fvScalarMatrix> R(volScalarField& Yi) const = 0;
// Momentum
//- Return whether the phase is stationary
virtual bool stationary() const = 0;
//- Return the momentum equation
virtual tmp<fvVectorMatrix> UEqn() = 0;
//- Return the momentum equation for the face-based algorithm
virtual tmp<fvVectorMatrix> UfEqn() = 0;
//- Return the velocity
virtual tmp<volVectorField> U() const = 0;
//- Access the velocity
virtual volVectorField& URef() = 0;
//- Access the velocity
virtual const volVectorField& URef() const = 0;
//- Return the volumetric flux
virtual tmp<surfaceScalarField> phi() const = 0;
//- Access the volumetric flux
virtual surfaceScalarField& phiRef() = 0;
//- Access the volumetric flux
virtual const surfaceScalarField& phiRef() const = 0;
//- Return the face velocity
// Required for moving mesh cases
virtual const autoPtr<surfaceVectorField>& Uf() const = 0;
//- Access the face velocity
// Required for moving mesh cases
virtual surfaceVectorField& UfRef() = 0;
//- Access the face velocity
// Required for moving mesh cases
virtual const surfaceVectorField& UfRef() const = 0;
//- Return the volumetric flux of the phase
virtual tmp<surfaceScalarField> alphaPhi() const = 0;
//- Access the volumetric flux of the phase
virtual surfaceScalarField& alphaPhiRef() = 0;
//- Access the volumetric flux of the phase
virtual const surfaceScalarField& alphaPhiRef() const = 0;
//- Return the mass flux of the phase
virtual tmp<surfaceScalarField> alphaRhoPhi() const = 0;
//- Access the mass flux of the phase
virtual surfaceScalarField& alphaRhoPhiRef() = 0;
//- Access the mass flux of the phase
virtual const surfaceScalarField& alphaRhoPhiRef() const = 0;
//- Return the substantive acceleration
virtual tmp<volVectorField> DUDt() const = 0;
//- Return the substantive acceleration on the faces
virtual tmp<surfaceScalarField> DUDtf() const = 0;
//- Return the continuity error
virtual tmp<volScalarField> continuityError() const = 0;
//- Return the phase kinetic energy
virtual tmp<volScalarField> K() const = 0;
// Transport
//- Effective thermal turbulent conductivity
// of mixture for patch [W/m/K]
virtual tmp<scalarField> kappaEff(const label patchi) const = 0;
//- Return the turbulent kinetic energy
virtual tmp<volScalarField> k() const = 0;
//- Return the phase-pressure'
// (derivative of phase-pressure w.r.t. phase-fraction)
virtual tmp<volScalarField> pPrime() const = 0;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //