Files
OpenFOAM-12/applications/modules/incompressibleDriftFlux/incompressibleDriftFlux.H
Will Bainbridge a5ea0b41f1 fvModels: Improved interface for mass/volume sources
The interface for fvModels has been modified to improve its application
to "proxy" equations. That is, equations that are not straightforward
statements of conservation laws in OpenFOAM's usual convention.

A standard conservation law typically takes the following form:

    fvMatrix<scalar> psiEqn
    (
        fvm::ddt(alpha, rho, psi)
      + <fluxes>
     ==
        <sources>
    );

A proxy equation, on the other hand, may be a derivation or
rearrangement of a law like this, and may be linearised in terms of a
different variable.

The pressure equation is the most common example of a proxy equation. It
represents a statement of the conservation of volume or mass, but it is
a rearrangement of the original continuity equation, and it has been
linearised in terms of a different variable; the pressure. Another
example is that in the pre-predictor of a VoF solver the
phase-continuity equation is constructed, but it is linearised in terms
of volume fraction rather than density.

In these situations, fvModels sources are now applied by calling:

    fvModels().sourceProxy(<conserved-fields ...>, <equation-field>)

Where <conserved-fields ...> are (alpha, rho, psi), (rho, psi), just
(psi), or are omitted entirely (for volume continuity), and the
<equation-field> is the field associated with the proxy equation. This
produces a source term identical in value to the following call:

    fvModels().source(<conserved-fields ...>)

It is only the linearisation in terms of <equation-field> that differs
between these two calls.

This change permits much greater flexibility in the handling of mass and
volume sources than the previous name-based system did. All the relevant
fields are available, dimensions can be used in the logic to determine
what sources are being constructed, and sources relating to a given
conservation law all share the same function.

This commit adds the functionality for injection-type sources in the
compressibleVoF solver. A following commit will add a volume source
model for use in incompressible solvers.
2023-09-28 09:04:31 +01:00

237 lines
6.9 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::solvers::incompressibleDriftFlux
Description
Solver module for 2 incompressible fluids using the mixture approach with
the drift-flux approximation for relative motion of the phases, with
optional mesh motion and mesh topology changes including adaptive
re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved with mixture transport modelling in which a
single laminar, RAS or LES model is selected to model the momentum stress.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
Optional fvModels and fvConstraints are provided to enhance the simulation
in many ways including adding various sources, Lagrangian
particles, surface film etc. and constraining or limiting the solution.
SourceFiles
incompressibleDriftFlux.C
See also
Foam::solvers::VoFSolver
Foam::solvers::twoPhaseSolver
Foam::solvers::compressibleVoF
\*---------------------------------------------------------------------------*/
#ifndef incompressibleDriftFlux_H
#define incompressibleDriftFlux_H
#include "twoPhaseSolver.H"
#include "incompressibleDriftFluxMixture.H"
#include "relativeVelocityModel.H"
#include "momentumTransportModel.H"
#include "compressibleMomentumTransportModels.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace solvers
{
/*---------------------------------------------------------------------------*\
Class incompressibleDriftFlux Declaration
\*---------------------------------------------------------------------------*/
class incompressibleDriftFlux
:
public twoPhaseSolver
{
protected:
// Phase properties
//- The compressible two-phase mixture
incompressibleDriftFluxMixture& mixture;
// Thermophysical properties
//- Static pressure field
volScalarField p;
// Pressure reference
//- Pressure reference
Foam::pressureReference pressureReference_;
// Momentum transport
//- Pointer to the dispersed phase relative velocity model
autoPtr<relativeVelocityModel> relativeVelocity;
//- Pointer to the momentum transport model
autoPtr<compressible::momentumTransportModel> momentumTransport;
private:
// Private Member Functions
//- Correct the cached Courant numbers
virtual void correctCoNum();
protected:
// Protected Member Functions
//- Return the pressure reference
virtual const Foam::pressureReference& pressureReference() const
{
return pressureReference_;
}
//- The flow is incompressible
virtual bool incompressible() const
{
return true;
}
//- Is the flow divergent?
// i.e. includes phase-fraction sources
virtual bool divergent() const
{
return
fvModels().addsSupToField(alpha1.name())
|| fvModels().addsSupToField(alpha2.name());
}
//- Return the mixture compressibility/density
// Not required for incompressible fluids
virtual tmp<volScalarField> psiByRho() const
{
return tmp<volScalarField>(nullptr);
}
virtual tmp<surfaceScalarField> alphaPhi
(
const surfaceScalarField& phi,
const volScalarField& alpha,
const dictionary& alphaControls
);
//- Adjust the rDeltaT in the vicinity of the interface
virtual void setInterfaceRDeltaT(volScalarField& rDeltaT);
//- Calculate the alpha equation sources
virtual void alphaSuSp
(
tmp<volScalarField::Internal>& Su,
tmp<volScalarField::Internal>& Sp
);
//- Correct the interface properties following mesh-change
// and phase-fraction update
virtual void correctInterface();
//- Return the interface surface tension force for the momentum equation
virtual tmp<surfaceScalarField> surfaceTensionForce() const;
//- Return the momentum equation stress term
virtual tmp<fvVectorMatrix> divDevTau(volVectorField& U)
{
return
relativeVelocity->divDevTau()
+ momentumTransport->divDevTau(U);
}
public:
//- Runtime type information
TypeName("incompressibleDriftFlux");
// Constructors
//- Construct from region mesh
incompressibleDriftFlux(fvMesh& mesh);
//- Disallow default bitwise copy construction
incompressibleDriftFlux(const incompressibleDriftFlux&) = delete;
//- Destructor
virtual ~incompressibleDriftFlux();
// Member Functions
//- Return the current maximum time-step for stable solution
virtual scalar maxDeltaT() const;
//- Called at the start of the PIMPLE loop
virtual void prePredictor();
//- Construct and solve the energy equation,
// convert to temperature
// and update thermophysical and transport properties
virtual void thermophysicalPredictor();
//- Construct and solve the pressure equation in the PISO loop
virtual void pressureCorrector();
//- Correct the momentum and thermophysical transport modelling
virtual void postCorrector();
// Member Operators
//- Disallow default bitwise assignment
void operator=(const incompressibleDriftFlux&) = delete;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace solvers
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //