The interface for fvModels has been modified to improve its application
to "proxy" equations. That is, equations that are not straightforward
statements of conservation laws in OpenFOAM's usual convention.
A standard conservation law typically takes the following form:
fvMatrix<scalar> psiEqn
(
fvm::ddt(alpha, rho, psi)
+ <fluxes>
==
<sources>
);
A proxy equation, on the other hand, may be a derivation or
rearrangement of a law like this, and may be linearised in terms of a
different variable.
The pressure equation is the most common example of a proxy equation. It
represents a statement of the conservation of volume or mass, but it is
a rearrangement of the original continuity equation, and it has been
linearised in terms of a different variable; the pressure. Another
example is that in the pre-predictor of a VoF solver the
phase-continuity equation is constructed, but it is linearised in terms
of volume fraction rather than density.
In these situations, fvModels sources are now applied by calling:
fvModels().sourceProxy(<conserved-fields ...>, <equation-field>)
Where <conserved-fields ...> are (alpha, rho, psi), (rho, psi), just
(psi), or are omitted entirely (for volume continuity), and the
<equation-field> is the field associated with the proxy equation. This
produces a source term identical in value to the following call:
fvModels().source(<conserved-fields ...>)
It is only the linearisation in terms of <equation-field> that differs
between these two calls.
This change permits much greater flexibility in the handling of mass and
volume sources than the previous name-based system did. All the relevant
fields are available, dimensions can be used in the logic to determine
what sources are being constructed, and sources relating to a given
conservation law all share the same function.
This commit adds the functionality for injection-type sources in the
compressibleVoF solver. A following commit will add a volume source
model for use in incompressible solvers.
266 lines
7.1 KiB
C++
266 lines
7.1 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration | Website: https://openfoam.org
|
|
\\ / A nd | Copyright (C) 2022-2023 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "isothermalFluid.H"
|
|
#include "constrainHbyA.H"
|
|
#include "constrainPressure.H"
|
|
#include "adjustPhi.H"
|
|
#include "fvcMeshPhi.H"
|
|
#include "fvcFlux.H"
|
|
#include "fvcDdt.H"
|
|
#include "fvcGrad.H"
|
|
#include "fvcSnGrad.H"
|
|
#include "fvcReconstruct.H"
|
|
#include "fvcVolumeIntegrate.H"
|
|
#include "fvmDiv.H"
|
|
#include "fvmLaplacian.H"
|
|
|
|
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
|
|
|
|
void Foam::solvers::isothermalFluid::correctPressure()
|
|
{
|
|
volScalarField& rho(rho_);
|
|
volScalarField& p(p_);
|
|
volVectorField& U(U_);
|
|
surfaceScalarField& phi(phi_);
|
|
|
|
const volScalarField& psi = thermo.psi();
|
|
rho = thermo.rho();
|
|
rho.relax();
|
|
|
|
fvVectorMatrix& UEqn = tUEqn.ref();
|
|
|
|
// Thermodynamic density needs to be updated by psi*d(p) after the
|
|
// pressure solution
|
|
const volScalarField psip0(psi*p);
|
|
|
|
const surfaceScalarField rhof(fvc::interpolate(rho));
|
|
|
|
const volScalarField rAU("rAU", 1.0/UEqn.A());
|
|
const surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
|
|
|
|
tmp<volScalarField> rAtU
|
|
(
|
|
pimple.consistent()
|
|
? volScalarField::New("rAtU", 1.0/(1.0/rAU - UEqn.H1()))
|
|
: tmp<volScalarField>(nullptr)
|
|
);
|
|
|
|
tmp<surfaceScalarField> rhorAtUf
|
|
(
|
|
pimple.consistent()
|
|
? surfaceScalarField::New("rhoRAtUf", fvc::interpolate(rho*rAtU()))
|
|
: tmp<surfaceScalarField>(nullptr)
|
|
);
|
|
|
|
const volScalarField& rAAtU = pimple.consistent() ? rAtU() : rAU;
|
|
const surfaceScalarField& rhorAAtUf =
|
|
pimple.consistent() ? rhorAtUf() : rhorAUf;
|
|
|
|
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
|
|
|
|
if (pimple.nCorrPiso() <= 1)
|
|
{
|
|
tUEqn.clear();
|
|
}
|
|
|
|
surfaceScalarField phiHbyA
|
|
(
|
|
"phiHbyA",
|
|
rhof*fvc::flux(HbyA)
|
|
+ rhorAUf*fvc::ddtCorr(rho, U, phi, rhoUf)
|
|
);
|
|
|
|
MRF.makeRelative(rhof, phiHbyA);
|
|
|
|
bool adjustMass = false;
|
|
|
|
if (pimple.transonic())
|
|
{
|
|
const surfaceScalarField phidByPsi
|
|
(
|
|
constrainPhid
|
|
(
|
|
fvc::relative(phiHbyA, rho, U)/rhof,
|
|
p
|
|
)
|
|
);
|
|
|
|
const surfaceScalarField phid("phid", fvc::interpolate(psi)*phidByPsi);
|
|
|
|
// Subtract the compressible part
|
|
// The resulting flux will be zero for a perfect gas
|
|
phiHbyA -= fvc::interpolate(psi*p)*phidByPsi;
|
|
|
|
if (pimple.consistent())
|
|
{
|
|
phiHbyA += (rhorAAtUf - rhorAUf)*fvc::snGrad(p)*mesh.magSf();
|
|
HbyA += (rAAtU - rAU)*fvc::grad(p);
|
|
}
|
|
|
|
// Update the pressure BCs to ensure flux consistency
|
|
constrainPressure(p, rho, U, phiHbyA, rhorAAtUf, MRF);
|
|
|
|
fvc::makeRelative(phiHbyA, rho, U);
|
|
|
|
fvScalarMatrix pDDtEqn
|
|
(
|
|
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
|
|
+ fvc::div(phiHbyA) + fvm::div(phid, p)
|
|
==
|
|
fvModels().sourceProxy(rho, p)
|
|
);
|
|
|
|
while (pimple.correctNonOrthogonal())
|
|
{
|
|
fvScalarMatrix pEqn(pDDtEqn - fvm::laplacian(rhorAAtUf, p));
|
|
|
|
// Relax the pressure equation to ensure diagonal-dominance
|
|
pEqn.relax();
|
|
|
|
pEqn.setReference
|
|
(
|
|
pressureReference.refCell(),
|
|
pressureReference.refValue()
|
|
);
|
|
|
|
fvConstraints().constrain(pEqn);
|
|
|
|
pEqn.solve();
|
|
|
|
if (pimple.finalNonOrthogonalIter())
|
|
{
|
|
phi = phiHbyA + pEqn.flux();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (pimple.consistent())
|
|
{
|
|
phiHbyA += (rhorAAtUf - rhorAUf)*fvc::snGrad(p)*mesh.magSf();
|
|
HbyA += (rAAtU - rAU)*fvc::grad(p);
|
|
}
|
|
|
|
// Update the pressure BCs to ensure flux consistency
|
|
constrainPressure(p, rho, U, phiHbyA, rhorAAtUf, MRF);
|
|
|
|
fvc::makeRelative(phiHbyA, rho, U);
|
|
|
|
if (mesh.schemes().steady())
|
|
{
|
|
adjustMass = adjustPhi(phiHbyA, U, p);
|
|
}
|
|
|
|
fvScalarMatrix pDDtEqn
|
|
(
|
|
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
|
|
+ fvc::div(phiHbyA)
|
|
==
|
|
fvModels().sourceProxy(rho, p)
|
|
);
|
|
|
|
while (pimple.correctNonOrthogonal())
|
|
{
|
|
fvScalarMatrix pEqn(pDDtEqn - fvm::laplacian(rhorAAtUf, p));
|
|
|
|
pEqn.setReference
|
|
(
|
|
pressureReference.refCell(),
|
|
pressureReference.refValue()
|
|
);
|
|
|
|
fvConstraints().constrain(pEqn);
|
|
|
|
pEqn.solve();
|
|
|
|
if (pimple.finalNonOrthogonalIter())
|
|
{
|
|
phi = phiHbyA + pEqn.flux();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!mesh.schemes().steady())
|
|
{
|
|
const bool constrained = fvConstraints().constrain(p);
|
|
|
|
// Thermodynamic density update
|
|
thermo_.correctRho(psi*p - psip0);
|
|
|
|
if (constrained)
|
|
{
|
|
rho = thermo.rho();
|
|
}
|
|
|
|
correctDensity();
|
|
}
|
|
|
|
continuityErrors();
|
|
|
|
// Explicitly relax pressure for momentum corrector
|
|
p.relax();
|
|
|
|
U = HbyA - rAAtU*fvc::grad(p);
|
|
U.correctBoundaryConditions();
|
|
fvConstraints().constrain(U);
|
|
K = 0.5*magSqr(U);
|
|
|
|
if (mesh.schemes().steady())
|
|
{
|
|
fvConstraints().constrain(p);
|
|
}
|
|
|
|
// For steady compressible closed-volume cases adjust the pressure level
|
|
// to obey overall mass continuity
|
|
if (adjustMass && !thermo.incompressible())
|
|
{
|
|
p += (initialMass - fvc::domainIntegrate(thermo.rho()))
|
|
/fvc::domainIntegrate(psi);
|
|
p.correctBoundaryConditions();
|
|
}
|
|
|
|
if (mesh.schemes().steady() || pimple.simpleRho() || adjustMass)
|
|
{
|
|
rho = thermo.rho();
|
|
}
|
|
|
|
if (mesh.schemes().steady() || pimple.simpleRho())
|
|
{
|
|
rho.relax();
|
|
}
|
|
|
|
// Correct rhoUf if the mesh is moving
|
|
fvc::correctRhoUf(rhoUf, rho, U, phi, MRF);
|
|
|
|
if (thermo.dpdt())
|
|
{
|
|
dpdt = fvc::ddt(p);
|
|
}
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|