Files
OpenFOAM-12/src/fvModels/derived/solidificationMeltingSource/solidificationMeltingSource.C
Will Bainbridge a5ea0b41f1 fvModels: Improved interface for mass/volume sources
The interface for fvModels has been modified to improve its application
to "proxy" equations. That is, equations that are not straightforward
statements of conservation laws in OpenFOAM's usual convention.

A standard conservation law typically takes the following form:

    fvMatrix<scalar> psiEqn
    (
        fvm::ddt(alpha, rho, psi)
      + <fluxes>
     ==
        <sources>
    );

A proxy equation, on the other hand, may be a derivation or
rearrangement of a law like this, and may be linearised in terms of a
different variable.

The pressure equation is the most common example of a proxy equation. It
represents a statement of the conservation of volume or mass, but it is
a rearrangement of the original continuity equation, and it has been
linearised in terms of a different variable; the pressure. Another
example is that in the pre-predictor of a VoF solver the
phase-continuity equation is constructed, but it is linearised in terms
of volume fraction rather than density.

In these situations, fvModels sources are now applied by calling:

    fvModels().sourceProxy(<conserved-fields ...>, <equation-field>)

Where <conserved-fields ...> are (alpha, rho, psi), (rho, psi), just
(psi), or are omitted entirely (for volume continuity), and the
<equation-field> is the field associated with the proxy equation. This
produces a source term identical in value to the following call:

    fvModels().source(<conserved-fields ...>)

It is only the linearisation in terms of <equation-field> that differs
between these two calls.

This change permits much greater flexibility in the handling of mass and
volume sources than the previous name-based system did. All the relevant
fields are available, dimensions can be used in the logic to determine
what sources are being constructed, and sources relating to a given
conservation law all share the same function.

This commit adds the functionality for injection-type sources in the
compressibleVoF solver. A following commit will add a volume source
model for use in incompressible solvers.
2023-09-28 09:04:31 +01:00

438 lines
10 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2014-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "solidificationMeltingSource.H"
#include "fvcDdt.H"
#include "fvMatrices.H"
#include "basicThermo.H"
#include "uniformDimensionedFields.H"
#include "zeroGradientFvPatchFields.H"
#include "extrapolatedCalculatedFvPatchFields.H"
#include "addToRunTimeSelectionTable.H"
#include "geometricOneField.H"
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
namespace Foam
{
template<>
const char* NamedEnum
<
fv::solidificationMeltingSource::thermoMode,
2
>::names[] =
{
"thermo",
"lookup"
};
namespace fv
{
defineTypeNameAndDebug(solidificationMeltingSource, 0);
addToRunTimeSelectionTable
(
fvModel,
solidificationMeltingSource,
dictionary
);
}
}
const Foam::NamedEnum<Foam::fv::solidificationMeltingSource::thermoMode, 2>
Foam::fv::solidificationMeltingSource::thermoModeTypeNames_;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::fv::solidificationMeltingSource::readCoeffs()
{
Tsol_ = coeffs().lookup<scalar>("Tsol");
Tliq_ = coeffs().lookupOrDefault<scalar>("Tliq", Tsol_);
alpha1e_ = coeffs().lookupOrDefault<scalar>("alpha1e", 0.0);
L_ = coeffs().lookup<scalar>("L");
relax_ = coeffs().lookupOrDefault("relax", 0.9);
mode_ = thermoModeTypeNames_.read(coeffs().lookup("thermoMode"));
rhoRef_ = coeffs().lookup<scalar>("rhoRef");
TName_ = coeffs().lookupOrDefault<word>("T", "T");
CpName_ = coeffs().lookupOrDefault<word>("Cp", "Cp");
UName_ = coeffs().lookupOrDefault<word>("U", "U");
phiName_ = coeffs().lookupOrDefault<word>("phi", "phi");
Cu_ = coeffs().lookupOrDefault<scalar>("Cu", 100000);
q_ = coeffs().lookupOrDefault("q", 0.001);
beta_ = coeffs().lookup<scalar>("beta");
}
Foam::tmp<Foam::volScalarField>
Foam::fv::solidificationMeltingSource::Cp() const
{
switch (mode_)
{
case thermoMode::thermo:
{
const basicThermo& thermo =
mesh().lookupObject<basicThermo>(physicalProperties::typeName);
return thermo.Cp();
break;
}
case thermoMode::lookup:
{
if (CpName_ == "CpRef")
{
scalar CpRef = coeffs().lookup<scalar>("CpRef");
return volScalarField::New
(
name() + ":Cp",
mesh(),
dimensionedScalar
(
dimEnergy/dimMass/dimTemperature,
CpRef
),
extrapolatedCalculatedFvPatchScalarField::typeName
);
}
else
{
return mesh().lookupObject<volScalarField>(CpName_);
}
break;
}
default:
{
FatalErrorInFunction
<< "Unhandled thermo mode: " << thermoModeTypeNames_[mode_]
<< abort(FatalError);
}
}
return tmp<volScalarField>(nullptr);
}
Foam::vector Foam::fv::solidificationMeltingSource::g() const
{
if (mesh().foundObject<uniformDimensionedVectorField>("g"))
{
const uniformDimensionedVectorField& value =
mesh().lookupObject<uniformDimensionedVectorField>("g");
return value.value();
}
else
{
return coeffs().lookup("g");
}
}
void Foam::fv::solidificationMeltingSource::update
(
const volScalarField& Cp
) const
{
if (curTimeIndex_ == mesh().time().timeIndex())
{
return;
}
if (debug)
{
Info<< type() << ": " << name()
<< " - updating phase indicator" << endl;
}
// update old time alpha1 field
alpha1_.oldTime();
const volScalarField& T = mesh().lookupObject<volScalarField>(TName_);
const labelUList cells = set_.cells();
forAll(cells, i)
{
const label celli = cells[i];
const scalar Tc = T[celli];
const scalar Cpc = Cp[celli];
const scalar alpha1New =
alpha1_[celli]
+ relax_*Cpc
*(
Tc
- max
(
Tsol_,
Tsol_
+ (Tliq_ - Tsol_)*(alpha1_[celli] - alpha1e_)/(1 - alpha1e_)
)
)/L_;
alpha1_[celli] = max(0, min(alpha1New, 1));
deltaT_[i] =
Tc
- max
(
Tsol_,
Tsol_
+ (Tliq_ - Tsol_)*(alpha1_[celli] - alpha1e_)/(1 - alpha1e_)
);
}
alpha1_.correctBoundaryConditions();
curTimeIndex_ = mesh().time().timeIndex();
}
template<class RhoFieldType>
void Foam::fv::solidificationMeltingSource::apply
(
const RhoFieldType& rho,
fvMatrix<scalar>& eqn
) const
{
if (debug)
{
Info<< type() << ": applying source to " << eqn.psi().name() << endl;
}
const volScalarField Cp(this->Cp());
update(Cp);
dimensionedScalar L("L", dimEnergy/dimMass, L_);
// Contributions added to rhs of solver equation
if (eqn.psi().dimensions() == dimTemperature)
{
eqn -= L/Cp*(fvc::ddt(rho, alpha1_));
}
else
{
eqn -= L*(fvc::ddt(rho, alpha1_));
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::fv::solidificationMeltingSource::solidificationMeltingSource
(
const word& name,
const word& modelType,
const fvMesh& mesh,
const dictionary& dict
)
:
fvModel(name, modelType, mesh, dict),
set_(mesh, coeffs()),
Tsol_(NaN),
Tliq_(NaN),
alpha1e_(NaN),
L_(NaN),
relax_(NaN),
mode_(thermoMode::thermo),
rhoRef_(NaN),
TName_(word::null),
CpName_(word::null),
UName_(word::null),
phiName_(word::null),
Cu_(NaN),
q_(NaN),
beta_(NaN),
alpha1_
(
IOobject
(
this->name() + ":alpha1",
mesh.time().name(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless, 0),
zeroGradientFvPatchScalarField::typeName
),
curTimeIndex_(-1),
deltaT_(set_.nCells(), 0)
{
readCoeffs();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::wordList Foam::fv::solidificationMeltingSource::addSupFields() const
{
switch (mode_)
{
case thermoMode::thermo:
{
const basicThermo& thermo =
mesh().lookupObject<basicThermo>(physicalProperties::typeName);
return wordList({UName_, thermo.he().name()});
}
case thermoMode::lookup:
{
return wordList({UName_, TName_});
}
}
return wordList::null();
}
void Foam::fv::solidificationMeltingSource::addSup
(
const volScalarField& he,
fvMatrix<scalar>& eqn
) const
{
apply(geometricOneField(), eqn);
}
void Foam::fv::solidificationMeltingSource::addSup
(
const volScalarField& rho,
const volScalarField& he,
fvMatrix<scalar>& eqn
) const
{
apply(rho, eqn);
}
void Foam::fv::solidificationMeltingSource::addSup
(
const volVectorField& U,
fvMatrix<vector>& eqn
) const
{
if (debug)
{
Info<< type() << ": applying source to " << eqn.psi().name() << endl;
}
const volScalarField Cp(this->Cp());
update(Cp);
vector g = this->g();
scalarField& Sp = eqn.diag();
vectorField& Su = eqn.source();
const scalarField& V = mesh().V();
const labelUList cells = set_.cells();
forAll(cells, i)
{
const label celli = cells[i];
const scalar Vc = V[celli];
const scalar alpha1c = alpha1_[celli];
const scalar S = -Cu_*sqr(1.0 - alpha1c)/(pow3(alpha1c) + q_);
const vector Sb = rhoRef_*g*beta_*deltaT_[i];
Sp[celli] += Vc*S;
Su[celli] += Vc*Sb;
}
}
void Foam::fv::solidificationMeltingSource::addSup
(
const volScalarField& rho,
const volVectorField& U,
fvMatrix<vector>& eqn
) const
{
addSup(U, eqn);
}
bool Foam::fv::solidificationMeltingSource::movePoints()
{
set_.movePoints();
return true;
}
void Foam::fv::solidificationMeltingSource::topoChange
(
const polyTopoChangeMap& map
)
{
set_.topoChange(map);
}
void Foam::fv::solidificationMeltingSource::mapMesh(const polyMeshMap& map)
{
set_.mapMesh(map);
}
void Foam::fv::solidificationMeltingSource::distribute
(
const polyDistributionMap& map
)
{
set_.distribute(map);
}
bool Foam::fv::solidificationMeltingSource::read(const dictionary& dict)
{
if (fvModel::read(dict))
{
set_.read(coeffs());
readCoeffs();
return true;
}
else
{
return false;
}
return false;
}
// ************************************************************************* //