Files
OpenFOAM-12/applications/utilities/parallelProcessing/decomposePar/decomposePar.C
Henry Weller f97f6326f0 Decomposition/redistribution: Separated choice of mesh decomposition and redistribution methods
When snappyHexMesh is run in parallel it re-balances the mesh during refinement
and layer addition by redistribution which requires a decomposition method
that operates in parallel, e.g. hierachical or ptscotch.  decomposePar uses a
decomposition method which operates in serial e.g. hierachical but NOT
ptscotch.  In order to run decomposePar followed by snappyHexMesh in parallel it
has been necessary to change the method specified in decomposeParDict but now
this is avoided by separately specifying the decomposition and distribution
methods, e.g. in the incompressible/simpleFoam/motorBike case:

numberOfSubdomains  6;

decomposer      hierarchical;
distributor     ptscotch;

hierarchicalCoeffs
{
    n               (3 2 1);
    order           xyz;
}

The distributor entry is also used for run-time mesh redistribution, e.g. in the
multiphase/interFoam/RAS/floatingObject case re-distribution for load-balancing
is enabled in constant/dynamicMeshDict:

distributor
{
    type            distributor;

    libs            ("libfvMeshDistributors.so");

    redistributionInterval  10;
}

which uses the distributor specified in system/decomposeParDict:

distributor     hierarchical;

This rationalisation provides the structure for development of mesh
redistribution and load-balancing.
2021-12-15 22:12:00 +00:00

1233 lines
44 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2021 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
decomposePar
Description
Automatically decomposes a mesh and fields of a case for parallel
execution of OpenFOAM.
Usage
\b decomposePar [OPTION]
Options:
- \par -cellDist
Write the cell distribution as a labelList, for use with 'manual'
decomposition method or as a volScalarField for post-processing.
- \par -region \<regionName\> \n
Decompose named region. Does not check for existence of processor*.
- \par -allRegions \n
Decompose all regions in regionProperties. Does not check for
existence of processor*.
- \par -copyZero \n
Copy \a 0 directory to processor* rather than decompose the fields.
- \par -copyUniform \n
Copy any \a uniform directories too.
- \par -constant
- \par -time xxx:yyy \n
Override controlDict settings and decompose selected times. Does not
re-decompose the mesh i.e. does not handle moving mesh or changing
mesh cases.
- \par -fields \n
Use existing geometry decomposition and convert fields only.
- \par -noSets \n
Skip decomposing cellSets, faceSets, pointSets.
- \par -force \n
Remove any existing \a processor subdirectories before decomposing the
geometry.
- \par -ifRequired \n
Only decompose the geometry if the number of domains has changed from a
previous decomposition. No \a processor subdirectories will be removed
unless the \a -force option is also specified. This option can be used
to avoid redundant geometry decomposition (eg, in scripts), but should
be used with caution when the underlying (serial) geometry or the
decomposition method etc. have been changed between decompositions.
- \par -dict \<filename\>
Specify alternative dictionary for the decomposition.
\*---------------------------------------------------------------------------*/
#include "domainDecomposition.H"
#include "decompositionMethod.H"
#include "argList.H"
#include "timeSelector.H"
#include "regionProperties.H"
#include "labelIOField.H"
#include "labelFieldIOField.H"
#include "scalarIOField.H"
#include "scalarFieldIOField.H"
#include "vectorIOField.H"
#include "vectorFieldIOField.H"
#include "sphericalTensorIOField.H"
#include "sphericalTensorFieldIOField.H"
#include "symmTensorIOField.H"
#include "symmTensorFieldIOField.H"
#include "tensorIOField.H"
#include "tensorFieldIOField.H"
#include "readFields.H"
#include "dimFieldDecomposer.H"
#include "fvFieldDecomposer.H"
#include "pointFieldDecomposer.H"
#include "lagrangianFieldDecomposer.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
const labelIOList& procAddressing
(
const PtrList<fvMesh>& procMeshList,
const label proci,
const word& name,
PtrList<labelIOList>& procAddressingList
)
{
const fvMesh& procMesh = procMeshList[proci];
if (!procAddressingList.set(proci))
{
procAddressingList.set
(
proci,
new labelIOList
(
IOobject
(
name,
procMesh.facesInstance(),
procMesh.meshSubDir,
procMesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
)
);
}
return procAddressingList[proci];
}
void decomposeUniform
(
const bool copyUniform,
const domainDecomposition& mesh,
const Time& processorDb,
const word& regionDir = word::null
)
{
const Time& runTime = mesh.time();
// Any uniform data to copy/link?
const fileName uniformDir(regionDir/"uniform");
if (fileHandler().isDir(runTime.timePath()/uniformDir))
{
Info<< "Detected additional non-decomposed files in "
<< runTime.timePath()/uniformDir
<< endl;
const fileName timePath =
fileHandler().filePath(processorDb.timePath());
if (copyUniform || mesh.distributed())
{
if (!fileHandler().exists(timePath/uniformDir))
{
fileHandler().cp
(
runTime.timePath()/uniformDir,
timePath/uniformDir
);
}
}
else
{
// link with relative paths
string parentPath = string("..")/"..";
if (regionDir != word::null)
{
parentPath = parentPath/"..";
}
fileName currentDir(cwd());
chDir(timePath);
if (!fileHandler().exists(uniformDir))
{
fileHandler().ln
(
parentPath/runTime.timeName()/uniformDir,
uniformDir
);
}
chDir(currentDir);
}
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"decompose a mesh and fields of a case for parallel execution"
);
argList::noParallel();
#include "addDictOption.H"
#include "addRegionOption.H"
#include "addAllRegionsOption.H"
argList::addBoolOption
(
"cellDist",
"write cell distribution as a labelList - for use with 'manual' "
"decomposition method or as a volScalarField for post-processing."
);
argList::addBoolOption
(
"copyZero",
"Copy \a 0 directory to processor* rather than decompose the fields"
);
argList::addBoolOption
(
"copyUniform",
"copy any uniform/ directories too"
);
argList::addBoolOption
(
"fields",
"use existing geometry decomposition and convert fields only"
);
argList::addBoolOption
(
"noFields",
"opposite of -fields; only decompose geometry"
);
argList::addBoolOption
(
"noSets",
"skip decomposing cellSets, faceSets, pointSets"
);
argList::addBoolOption
(
"force",
"remove existing processor*/ subdirs before decomposing the geometry"
);
argList::addBoolOption
(
"ifRequired",
"only decompose geometry if the number of domains has changed"
);
// Include explicit constant options, have zero from time range
timeSelector::addOptions(true, false);
#include "setRootCase.H"
bool region = args.optionFound("region");
bool writeCellDist = args.optionFound("cellDist");
bool copyZero = args.optionFound("copyZero");
bool copyUniform = args.optionFound("copyUniform");
bool decomposeFieldsOnly = args.optionFound("fields");
bool decomposeGeomOnly = args.optionFound("noFields");
bool decomposeSets = !args.optionFound("noSets");
bool forceOverwrite = args.optionFound("force");
bool ifRequiredDecomposition = args.optionFound("ifRequired");
if (decomposeGeomOnly)
{
Info<< "Skipping decomposing fields"
<< nl << endl;
if (decomposeFieldsOnly || copyZero)
{
FatalErrorInFunction
<< "Cannot combine geometry-only decomposition (-noFields)"
<< " with field decomposition (-noFields or -copyZero)"
<< exit(FatalError);
}
}
// Set time from database
#include "createTime.H"
// Allow override of time
instantList times = timeSelector::selectIfPresent(runTime, args);
const wordList regionNames(selectRegionNames(args, runTime));
{
// Determine the existing processor count directly
label nProcs = fileHandler().nProcs(runTime.path());
if (forceOverwrite)
{
if (region)
{
FatalErrorInFunction
<< "Cannot force the decomposition of a single region"
<< exit(FatalError);
}
Info<< "Removing " << nProcs
<< " existing processor directories" << endl;
// Remove existing processors directory
fileNameList dirs
(
fileHandler().readDir
(
runTime.path(),
fileType::directory
)
);
forAllReverse(dirs, diri)
{
const fileName& d = dirs[diri];
// Starts with 'processors'
if (d.find("processors") == 0)
{
if (fileHandler().exists(d))
{
fileHandler().rmDir(d);
}
}
// Starts with 'processor'
if (d.find("processor") == 0)
{
// Check that integer after processor
fileName num(d.substr(9));
label proci = -1;
if (Foam::read(num.c_str(), proci))
{
if (fileHandler().exists(d))
{
fileHandler().rmDir(d);
}
}
}
}
}
else if (nProcs && !region && !decomposeFieldsOnly)
{
FatalErrorInFunction
<< "Case is already decomposed with " << nProcs
<< " domains, use the -force option or manually" << nl
<< "remove processor directories before decomposing. e.g.,"
<< nl
<< " rm -rf " << runTime.path().c_str() << "/processor*"
<< nl
<< exit(FatalError);
}
}
forAll(regionNames, regioni)
{
const word& regionName = regionNames[regioni];
const word& regionDir = Foam::regionDir(regionName);
Info<< "\n\nDecomposing mesh " << regionName << nl << endl;
// Determine the existing processor count directly
label nProcs = fileHandler().nProcs(runTime.path(), regionDir);
// Get requested numberOfSubdomains
const label nDomains =
decompositionMethod::decomposeParDict(runTime)
.lookup<label>("numberOfSubdomains");
// Give file handler a chance to determine the output directory
const_cast<fileOperation&>(fileHandler()).setNProcs(nDomains);
if (decomposeFieldsOnly)
{
// Sanity check on previously decomposed case
if (nProcs != nDomains)
{
FatalErrorInFunction
<< "Specified -fields, but the case was decomposed with "
<< nProcs << " domains"
<< nl
<< "instead of " << nDomains
<< " domains as specified in decomposeParDict"
<< nl
<< exit(FatalError);
}
}
else if (nProcs)
{
if (ifRequiredDecomposition && nProcs == nDomains)
{
// Reuse the decomposition
decomposeFieldsOnly = true;
Info<< "Using existing processor directories" << nl;
}
}
Info<< "Create mesh" << endl;
domainDecomposition mesh
(
IOobject
(
regionName,
runTime.timeName(),
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
)
);
// Decompose the mesh
if (!decomposeFieldsOnly)
{
mesh.decomposeMesh();
mesh.writeDecomposition(decomposeSets);
if (writeCellDist)
{
const labelList& procIds = mesh.cellToProc();
// Write the decomposition as labelList for use with 'manual'
// decomposition method.
labelIOList cellDecomposition
(
IOobject
(
"cellDecomposition",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
procIds
);
cellDecomposition.write();
Info<< nl << "Wrote decomposition to "
<< cellDecomposition.relativeObjectPath()
<< " for use in manual decomposition." << endl;
// Write as volScalarField for postprocessing.
volScalarField cellDist
(
IOobject
(
"cellDist",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless, 0)
);
forAll(procIds, celli)
{
cellDist[celli] = procIds[celli];
}
cellDist.write();
Info<< nl << "Wrote decomposition as volScalarField to "
<< cellDist.name() << " for use in postprocessing."
<< endl;
}
fileHandler().flush();
}
if (copyZero)
{
// Copy the 0 directory into each of the processor directories
fileName prevTimePath;
for (label proci = 0; proci < mesh.nProcs(); proci++)
{
Time processorDb
(
Time::controlDictName,
args.rootPath(),
args.caseName()/fileName(word("processor") + name(proci))
);
processorDb.setTime(runTime);
if (fileHandler().isDir(runTime.timePath()))
{
// Get corresponding directory name (to handle processors/)
const fileName timePath
(
fileHandler().objectPath
(
IOobject
(
"",
processorDb.timeName(),
processorDb
),
word::null
)
);
if (timePath != prevTimePath)
{
Info<< "Processor " << proci
<< ": copying " << runTime.timePath() << nl
<< " to " << timePath << endl;
fileHandler().cp(runTime.timePath(), timePath);
prevTimePath = timePath;
}
}
}
}
else if (!decomposeGeomOnly)
{
// Decompose the field files
// Cached processor meshes and maps. These are only preserved if
// running with multiple times.
PtrList<Time> processorDbList(mesh.nProcs());
PtrList<fvMesh> procMeshList(mesh.nProcs());
PtrList<labelIOList> faceProcAddressingList(mesh.nProcs());
PtrList<labelIOList> cellProcAddressingList(mesh.nProcs());
PtrList<labelIOList> boundaryProcAddressingList(mesh.nProcs());
PtrList<fvFieldDecomposer> fieldDecomposerList(mesh.nProcs());
PtrList<dimFieldDecomposer> dimFieldDecomposerList(mesh.nProcs());
PtrList<labelIOList> pointProcAddressingList(mesh.nProcs());
PtrList<pointFieldDecomposer> pointFieldDecomposerList
(
mesh.nProcs()
);
// Loop over all times
forAll(times, timeI)
{
runTime.setTime(times[timeI], timeI);
Info<< "Time = " << runTime.userTimeName() << endl;
// Search for list of objects for this time
IOobjectList objects(mesh, runTime.timeName());
// Construct the vol fields
// ~~~~~~~~~~~~~~~~~~~~~~~~
PtrList<volScalarField> volScalarFields;
readFields(mesh, objects, volScalarFields);
PtrList<volVectorField> volVectorFields;
readFields(mesh, objects, volVectorFields);
PtrList<volSphericalTensorField> volSphericalTensorFields;
readFields(mesh, objects, volSphericalTensorFields);
PtrList<volSymmTensorField> volSymmTensorFields;
readFields(mesh, objects, volSymmTensorFields);
PtrList<volTensorField> volTensorFields;
readFields(mesh, objects, volTensorFields);
// Construct the dimensioned fields
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PtrList<DimensionedField<scalar, volMesh>> dimScalarFields;
readFields(mesh, objects, dimScalarFields);
PtrList<DimensionedField<vector, volMesh>> dimVectorFields;
readFields(mesh, objects, dimVectorFields);
PtrList<DimensionedField<sphericalTensor, volMesh>>
dimSphericalTensorFields;
readFields(mesh, objects, dimSphericalTensorFields);
PtrList<DimensionedField<symmTensor, volMesh>>
dimSymmTensorFields;
readFields(mesh, objects, dimSymmTensorFields);
PtrList<DimensionedField<tensor, volMesh>> dimTensorFields;
readFields(mesh, objects, dimTensorFields);
// Construct the surface fields
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PtrList<surfaceScalarField> surfaceScalarFields;
readFields(mesh, objects, surfaceScalarFields);
PtrList<surfaceVectorField> surfaceVectorFields;
readFields(mesh, objects, surfaceVectorFields);
PtrList<surfaceSphericalTensorField>
surfaceSphericalTensorFields;
readFields(mesh, objects, surfaceSphericalTensorFields);
PtrList<surfaceSymmTensorField> surfaceSymmTensorFields;
readFields(mesh, objects, surfaceSymmTensorFields);
PtrList<surfaceTensorField> surfaceTensorFields;
readFields(mesh, objects, surfaceTensorFields);
// Construct the point fields
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
const pointMesh& pMesh = pointMesh::New(mesh);
PtrList<pointScalarField> pointScalarFields;
readFields(pMesh, objects, pointScalarFields);
PtrList<pointVectorField> pointVectorFields;
readFields(pMesh, objects, pointVectorFields);
PtrList<pointSphericalTensorField> pointSphericalTensorFields;
readFields(pMesh, objects, pointSphericalTensorFields);
PtrList<pointSymmTensorField> pointSymmTensorFields;
readFields(pMesh, objects, pointSymmTensorFields);
PtrList<pointTensorField> pointTensorFields;
readFields(pMesh, objects, pointTensorFields);
// Construct the Lagrangian fields
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
fileNameList cloudDirs
(
fileHandler().readDir
(
runTime.timePath()/cloud::prefix,
fileType::directory
)
);
// Particles
PtrList<Cloud<indexedParticle>> lagrangianPositions
(
cloudDirs.size()
);
// Particles per cell
PtrList<List<SLList<indexedParticle*>*>> cellParticles
(
cloudDirs.size()
);
PtrList<PtrList<labelIOField>> lagrangianLabelFields
(
cloudDirs.size()
);
PtrList<PtrList<labelFieldCompactIOField>>
lagrangianLabelFieldFields
(
cloudDirs.size()
);
PtrList<PtrList<scalarIOField>> lagrangianScalarFields
(
cloudDirs.size()
);
PtrList<PtrList<scalarFieldCompactIOField>>
lagrangianScalarFieldFields
(
cloudDirs.size()
);
PtrList<PtrList<vectorIOField>> lagrangianVectorFields
(
cloudDirs.size()
);
PtrList<PtrList<vectorFieldCompactIOField>>
lagrangianVectorFieldFields
(
cloudDirs.size()
);
PtrList<PtrList<sphericalTensorIOField>>
lagrangianSphericalTensorFields
(
cloudDirs.size()
);
PtrList<PtrList<sphericalTensorFieldCompactIOField>>
lagrangianSphericalTensorFieldFields(cloudDirs.size());
PtrList<PtrList<symmTensorIOField>> lagrangianSymmTensorFields
(
cloudDirs.size()
);
PtrList<PtrList<symmTensorFieldCompactIOField>>
lagrangianSymmTensorFieldFields
(
cloudDirs.size()
);
PtrList<PtrList<tensorIOField>> lagrangianTensorFields
(
cloudDirs.size()
);
PtrList<PtrList<tensorFieldCompactIOField>>
lagrangianTensorFieldFields
(
cloudDirs.size()
);
label cloudI = 0;
forAll(cloudDirs, i)
{
IOobjectList sprayObjs
(
mesh,
runTime.timeName(),
cloud::prefix/cloudDirs[i],
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
IOobject* positionsPtr = sprayObjs.lookup
(
word("positions")
);
if (positionsPtr)
{
// Read lagrangian particles
// ~~~~~~~~~~~~~~~~~~~~~~~~~
Info<< "Identified lagrangian data set: "
<< cloudDirs[i] << endl;
lagrangianPositions.set
(
cloudI,
new Cloud<indexedParticle>
(
mesh,
cloudDirs[i],
false
)
);
// Sort particles per cell
// ~~~~~~~~~~~~~~~~~~~~~~~
cellParticles.set
(
cloudI,
new List<SLList<indexedParticle*>*>
(
mesh.nCells(),
static_cast<SLList<indexedParticle*>*>(nullptr)
)
);
label i = 0;
forAllIter
(
Cloud<indexedParticle>,
lagrangianPositions[cloudI],
iter
)
{
iter().index() = i++;
label celli = iter().cell();
// Check
if (celli < 0 || celli >= mesh.nCells())
{
FatalErrorInFunction
<< "Illegal cell number " << celli
<< " for particle with index "
<< iter().index()
<< " at position "
<< iter().position() << nl
<< "Cell number should be between 0 and "
<< mesh.nCells()-1 << nl
<< "On this mesh the particle should"
<< " be in cell "
<< mesh.findCell(iter().position())
<< exit(FatalError);
}
if (!cellParticles[cloudI][celli])
{
cellParticles[cloudI][celli] =
new SLList<indexedParticle*>();
}
cellParticles[cloudI][celli]->append(&iter());
}
// Read fields
// ~~~~~~~~~~~
IOobjectList lagrangianObjects
(
mesh,
runTime.timeName(),
cloud::prefix/cloudDirs[cloudI],
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
lagrangianFieldDecomposer::readFields
(
cloudI,
lagrangianObjects,
lagrangianLabelFields
);
lagrangianFieldDecomposer::readFieldFields
(
cloudI,
lagrangianObjects,
lagrangianLabelFieldFields
);
lagrangianFieldDecomposer::readFields
(
cloudI,
lagrangianObjects,
lagrangianScalarFields
);
lagrangianFieldDecomposer::readFieldFields
(
cloudI,
lagrangianObjects,
lagrangianScalarFieldFields
);
lagrangianFieldDecomposer::readFields
(
cloudI,
lagrangianObjects,
lagrangianVectorFields
);
lagrangianFieldDecomposer::readFieldFields
(
cloudI,
lagrangianObjects,
lagrangianVectorFieldFields
);
lagrangianFieldDecomposer::readFields
(
cloudI,
lagrangianObjects,
lagrangianSphericalTensorFields
);
lagrangianFieldDecomposer::readFieldFields
(
cloudI,
lagrangianObjects,
lagrangianSphericalTensorFieldFields
);
lagrangianFieldDecomposer::readFields
(
cloudI,
lagrangianObjects,
lagrangianSymmTensorFields
);
lagrangianFieldDecomposer::readFieldFields
(
cloudI,
lagrangianObjects,
lagrangianSymmTensorFieldFields
);
lagrangianFieldDecomposer::readFields
(
cloudI,
lagrangianObjects,
lagrangianTensorFields
);
lagrangianFieldDecomposer::readFieldFields
(
cloudI,
lagrangianObjects,
lagrangianTensorFieldFields
);
cloudI++;
}
}
lagrangianPositions.setSize(cloudI);
cellParticles.setSize(cloudI);
lagrangianLabelFields.setSize(cloudI);
lagrangianLabelFieldFields.setSize(cloudI);
lagrangianScalarFields.setSize(cloudI);
lagrangianScalarFieldFields.setSize(cloudI);
lagrangianVectorFields.setSize(cloudI);
lagrangianVectorFieldFields.setSize(cloudI);
lagrangianSphericalTensorFields.setSize(cloudI);
lagrangianSphericalTensorFieldFields.setSize(cloudI);
lagrangianSymmTensorFields.setSize(cloudI);
lagrangianSymmTensorFieldFields.setSize(cloudI);
lagrangianTensorFields.setSize(cloudI);
lagrangianTensorFieldFields.setSize(cloudI);
Info<< endl;
// split the fields over processors
for (label proci = 0; proci < mesh.nProcs(); proci++)
{
Info<< "Processor " << proci << ": field transfer" << endl;
// open the database
if (!processorDbList.set(proci))
{
processorDbList.set
(
proci,
new Time
(
Time::controlDictName,
args.rootPath(),
args.caseName()
/fileName(word("processor") + name(proci))
)
);
}
Time& processorDb = processorDbList[proci];
processorDb.setTime(runTime);
// read the mesh
if (!procMeshList.set(proci))
{
procMeshList.set
(
proci,
new fvMesh
(
IOobject
(
regionName,
processorDb.timeName(),
processorDb
),
false
)
);
}
const fvMesh& procMesh = procMeshList[proci];
const labelIOList& faceProcAddressing = procAddressing
(
procMeshList,
proci,
"faceProcAddressing",
faceProcAddressingList
);
const labelIOList& cellProcAddressing = procAddressing
(
procMeshList,
proci,
"cellProcAddressing",
cellProcAddressingList
);
const labelIOList& boundaryProcAddressing = procAddressing
(
procMeshList,
proci,
"boundaryProcAddressing",
boundaryProcAddressingList
);
// FV fields
{
if (!fieldDecomposerList.set(proci))
{
fieldDecomposerList.set
(
proci,
new fvFieldDecomposer
(
mesh,
procMesh,
faceProcAddressing,
cellProcAddressing,
boundaryProcAddressing
)
);
}
const fvFieldDecomposer& fieldDecomposer =
fieldDecomposerList[proci];
fieldDecomposer.decomposeFields(volScalarFields);
fieldDecomposer.decomposeFields(volVectorFields);
fieldDecomposer.decomposeFields
(
volSphericalTensorFields
);
fieldDecomposer.decomposeFields(volSymmTensorFields);
fieldDecomposer.decomposeFields(volTensorFields);
fieldDecomposer.decomposeFields(surfaceScalarFields);
fieldDecomposer.decomposeFields(surfaceVectorFields);
fieldDecomposer.decomposeFields
(
surfaceSphericalTensorFields
);
fieldDecomposer.decomposeFields
(
surfaceSymmTensorFields
);
fieldDecomposer.decomposeFields(surfaceTensorFields);
if (times.size() == 1)
{
// Clear cached decomposer
fieldDecomposerList.set(proci, nullptr);
}
}
// Dimensioned fields
{
if (!dimFieldDecomposerList.set(proci))
{
dimFieldDecomposerList.set
(
proci,
new dimFieldDecomposer
(
mesh,
procMesh,
faceProcAddressing,
cellProcAddressing
)
);
}
const dimFieldDecomposer& dimDecomposer =
dimFieldDecomposerList[proci];
dimDecomposer.decomposeFields(dimScalarFields);
dimDecomposer.decomposeFields(dimVectorFields);
dimDecomposer.decomposeFields(dimSphericalTensorFields);
dimDecomposer.decomposeFields(dimSymmTensorFields);
dimDecomposer.decomposeFields(dimTensorFields);
if (times.size() == 1)
{
dimFieldDecomposerList.set(proci, nullptr);
}
}
// Point fields
if
(
pointScalarFields.size()
|| pointVectorFields.size()
|| pointSphericalTensorFields.size()
|| pointSymmTensorFields.size()
|| pointTensorFields.size()
)
{
const labelIOList& pointProcAddressing = procAddressing
(
procMeshList,
proci,
"pointProcAddressing",
pointProcAddressingList
);
const pointMesh& procPMesh = pointMesh::New(procMesh);
if (!pointFieldDecomposerList.set(proci))
{
pointFieldDecomposerList.set
(
proci,
new pointFieldDecomposer
(
pMesh,
procPMesh,
pointProcAddressing,
boundaryProcAddressing
)
);
}
const pointFieldDecomposer& pointDecomposer =
pointFieldDecomposerList[proci];
pointDecomposer.decomposeFields(pointScalarFields);
pointDecomposer.decomposeFields(pointVectorFields);
pointDecomposer.decomposeFields
(
pointSphericalTensorFields
);
pointDecomposer.decomposeFields(pointSymmTensorFields);
pointDecomposer.decomposeFields(pointTensorFields);
if (times.size() == 1)
{
pointProcAddressingList.set(proci, nullptr);
pointFieldDecomposerList.set(proci, nullptr);
}
}
// If there is lagrangian data write it out
forAll(lagrangianPositions, cloudI)
{
if (lagrangianPositions[cloudI].size())
{
lagrangianFieldDecomposer fieldDecomposer
(
mesh,
procMesh,
faceProcAddressing,
cellProcAddressing,
cloudDirs[cloudI],
lagrangianPositions[cloudI],
cellParticles[cloudI]
);
// Lagrangian fields
{
fieldDecomposer.decomposeFields
(
cloudDirs[cloudI],
lagrangianLabelFields[cloudI]
);
fieldDecomposer.decomposeFieldFields
(
cloudDirs[cloudI],
lagrangianLabelFieldFields[cloudI]
);
fieldDecomposer.decomposeFields
(
cloudDirs[cloudI],
lagrangianScalarFields[cloudI]
);
fieldDecomposer.decomposeFieldFields
(
cloudDirs[cloudI],
lagrangianScalarFieldFields[cloudI]
);
fieldDecomposer.decomposeFields
(
cloudDirs[cloudI],
lagrangianVectorFields[cloudI]
);
fieldDecomposer.decomposeFieldFields
(
cloudDirs[cloudI],
lagrangianVectorFieldFields[cloudI]
);
fieldDecomposer.decomposeFields
(
cloudDirs[cloudI],
lagrangianSphericalTensorFields[cloudI]
);
fieldDecomposer.decomposeFieldFields
(
cloudDirs[cloudI],
lagrangianSphericalTensorFieldFields[cloudI]
);
fieldDecomposer.decomposeFields
(
cloudDirs[cloudI],
lagrangianSymmTensorFields[cloudI]
);
fieldDecomposer.decomposeFieldFields
(
cloudDirs[cloudI],
lagrangianSymmTensorFieldFields[cloudI]
);
fieldDecomposer.decomposeFields
(
cloudDirs[cloudI],
lagrangianTensorFields[cloudI]
);
fieldDecomposer.decomposeFieldFields
(
cloudDirs[cloudI],
lagrangianTensorFieldFields[cloudI]
);
}
}
}
// Decompose the "uniform" directory in the time region
// directory
decomposeUniform(copyUniform, mesh, processorDb, regionDir);
// For the first region of a multi-region case additionally
// decompose the "uniform" directory in the time directory
if (regionNames.size() > 1 && regioni == 0)
{
decomposeUniform(copyUniform, mesh, processorDb);
}
// We have cached all the constant mesh data for the current
// processor. This is only important if running with
// multiple times, otherwise it is just extra storage.
if (times.size() == 1)
{
boundaryProcAddressingList.set(proci, nullptr);
cellProcAddressingList.set(proci, nullptr);
faceProcAddressingList.set(proci, nullptr);
procMeshList.set(proci, nullptr);
processorDbList.set(proci, nullptr);
}
}
}
}
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //