Files
OpenFOAM-12/applications/utilities/mesh/advanced/combinePatchFaces/combinePatchFaces.C
Will Bainbridge 476bb42b04 unitConversion: Unit conversions on all input parameters
The majority of input parameters now support automatic unit conversion.
Units are specified within square brackets, either before or after the
value. Primitive parameters (e.g., scalars, vectors, tensors, ...),
dimensioned types, fields, Function1-s and Function2-s all support unit
conversion in this way.

Unit conversion occurs on input only. OpenFOAM writes out all fields and
parameters in standard units. It is recommended to use '.orig' files in
the 0 directory to preserve user-readable input if those files are being
modified by pre-processing applications (e.g., setFields).

For example, to specify a volumetric flow rate inlet boundary in litres
per second [l/s], rather than metres-cubed per second [m^3/s], in 0/U:

    boundaryField
    {
        inlet
        {
            type            flowRateInletVelocity;
            volumetricFlowRate 0.1 [l/s];
            value           $internalField;
        }

        ...
    }

Or, to specify the pressure field in bar, in 0/p:

    internalField   uniform 1 [bar];

Or, to convert the parameters of an Arrhenius reaction rate from a
cm-mol-kcal unit system, in constant/chemistryProperties:

    reactions
    {
        methaneReaction
        {
            type    irreversibleArrhenius;
            reaction "CH4^0.2 + 2O2^1.3 = CO2 + 2H2O";
            A       6.7e12 [(mol/cm^3)^-0.5/s];
            beta    0;
            Ea      48.4 [kcal/mol];
        }
    }

Or, to define a time-varying outlet pressure using a CSV file in which
the pressure column is in mega-pascals [MPa], in 0/p:

    boundaryField
    {
        outlet
        {
            type            uniformFixedValue;
            value
            {
                type            table;
                format          csv;
                nHeaderLine     1;
                units           ([s] [MPa]); // <-- new units entry
                columns         (0 1);
                mergeSeparators no;
                file            "data/pressure.csv";
                outOfBounds     clamp;
                interpolationScheme linear;
            }
        }

        ...
    }

(Note also that a new 'columns' entry replaces the old 'refColumn' and
'componentColumns'. This is is considered to be more intuitive, and has
a consistent syntax with the new 'units' entry. 'columns' and
'componentColumns' have been retained for backwards compatibility and
will continue to work for the time being.)

Unit definitions can be added in the global or case controlDict files.
See UnitConversions in $WM_PROJECT_DIR/etc/controlDict for examples.
Currently available units include:

    Standard: kg m s K kmol A Cd

     Derived: Hz N Pa J W g um mm cm km l ml us ms min hr mol
              rpm bar atm kPa MPa cal kcal cSt cP % rad rot deg

A user-time unit is also provided if user-time is in operation. This
allows it to be specified locally whether a parameter relates to
real-time or to user-time. For example, to define a mass source that
ramps up from a given engine-time (in crank-angle-degrees [CAD]) over a
duration in real-time, in constant/fvModels:

    massSource1
    {
        type        massSource;
        points      ((1 2 3));
        massFlowRate
        {
            type        scale;
            scale       linearRamp;
            start       20 [CAD];
            duration    50 [ms];
            value       0.1 [g/s];
        }
    }

Specified units will be checked against the parameter's dimensions where
possible, and an error generated if they are not consistent. For the
dimensions to be available for this check, the code requires
modification, and work propagating this change across OpenFOAM is
ongoing. Unit conversions are still possible without these changes, but
the validity of such conversions will not be checked.

Units are no longer permitted in 'dimensions' entries in field files.
These 'dimensions' entries can now, instead, take the names of
dimensions. The names of the available dimensions are:

    Standard: mass length time temperature
              moles current luminousIntensity

     Derived: area volume rate velocity momentum acceleration density
              force energy power pressure kinematicPressure
              compressibility gasConstant specificHeatCapacity
              kinematicViscosity dynamicViscosity thermalConductivity
              volumetricFlux massFlux

So, for example, a 0/epsilon file might specify the dimensions as
follows:

    dimensions      [energy/mass/time];

And a 0/alphat file might have:

    dimensions      [thermalConductivity/specificHeatCapacity];

*** Development Notes ***

A unit conversion can construct trivially from a dimension set,
resulting in a "standard" unit with a conversion factor of one. This
means the functions which perform unit conversion on read can be
provided dimension sets or unit conversion objects interchangeably.

A basic `dict.lookup<vector>("Umean")` call will do unit conversion, but
it does not know the parameter's dimensions, so it cannot check the
validity of the supplied units. A corresponding lookup function has been
added in which the dimensions or units can be provided; in this case the
corresponding call would be `dict.lookup<vector>("Umean", dimVelocity)`.
This function enables additional checking and should be used wherever
possible.

Function1-s and Function2-s have had their constructors and selectors
changed so that dimensions/units must be specified by calling code. In
the case of Function1, two unit arguments must be given; one for the
x-axis and one for the value-axis. For Function2-s, three must be
provided.

In some cases, it is desirable (or at least established practice), that
a given non-standard unit be used in the absence of specific
user-defined units. Commonly this includes reading angles in degrees
(rather than radians) and reading times in user-time (rather than
real-time). The primitive lookup functions and Function1 and Function2
selectors both support specifying a non-standard default unit. For
example, `theta_ = dict.lookup<scalar>("theta", unitDegrees)` will read
an angle in degrees by default. If this is done within a model which
also supports writing then the write call must be modified accordingly
so that the data is also written out in degrees. Overloads of writeEntry
have been created for this purpose. In this case, the angle theta should
be written out with `writeEntry(os, "theta", unitDegrees, theta_)`.
Function1-s and Function2-s behave similarly, but with greater numbers
of dimensions/units arguments as before.

The non-standard user-time unit can be accessed by a `userUnits()`
method that has been added to Time. Use of this user-time unit in the
construction of Function1-s should prevent the need for explicit
user-time conversion in boundary conditions and sub-models and similar.

Some models might contain non-typed stream-based lookups of the form
`dict.lookup("p0") >> p0_` (e.g., in a re-read method), or
`Umean_(dict.lookup("Umean"))` (e.g., in an initialiser list). These
calls cannot facilitate unit conversion and are therefore discouraged.
They should be replaced with
`p0_ = dict.lookup<scalar>("p0", dimPressure)` and
`Umean_(dict.lookup<vector>("Umean", dimVelocity))` and similar whenever
they are found.
2024-05-16 09:01:46 +01:00

405 lines
12 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2024 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
combinePatchFaces
Description
Checks for multiple patch faces on same cell and combines them.
Multiple patch faces can result from e.g. removal of refined
neighbouring cells, leaving 4 exposed faces with same owner.
Rules for merging:
- only boundary faces (since multiple internal faces between two cells
not allowed anyway)
- faces have to have same owner
- faces have to be connected via edge which are not features (so angle
between them < feature angle)
- outside of faces has to be single loop
- outside of face should not be (or just slightly) concave (so angle
between consecutive edges < concaveangle
E.g. to allow all faces on same patch to be merged:
combinePatchFaces 180 -concaveAngle 90
\*---------------------------------------------------------------------------*/
#include "PstreamReduceOps.H"
#include "argList.H"
#include "Time.H"
#include "polyTopoChange.H"
#include "combineFaces.H"
#include "removePoints.H"
#include "meshCheck.H"
#include "polyTopoChangeMap.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Merge faces on the same patch (usually from exposing refinement)
// Can undo merges if these cause problems.
label mergePatchFaces
(
const scalar minCos,
const scalar concaveSin,
const autoPtr<IOdictionary>& qualDictPtr,
const Time& runTime,
polyMesh& mesh
)
{
// Patch face merging engine
combineFaces faceCombiner(mesh);
// Get all sets of faces that can be merged
labelListList allFaceSets(faceCombiner.getMergeSets(minCos, concaveSin));
label nFaceSets = returnReduce(allFaceSets.size(), sumOp<label>());
Info<< "Merging " << nFaceSets << " sets of faces." << endl;
if (nFaceSets > 0)
{
// Store the faces of the face sets
List<faceList> allFaceSetsFaces(allFaceSets.size());
forAll(allFaceSets, setI)
{
allFaceSetsFaces[setI] = UIndirectList<face>
(
mesh.faces(),
allFaceSets[setI]
);
}
autoPtr<polyTopoChangeMap> map;
{
// Topology changes container
polyTopoChange meshMod(mesh);
// Merge all faces of a set into the first face of the set.
faceCombiner.setRefinement(allFaceSets, meshMod);
// Change the mesh
map = meshMod.changeMesh(mesh, true);
// Update fields
mesh.topoChange(map);
}
// Check for errors and undo
// ~~~~~~~~~~~~~~~~~~~~~~~~~
// Faces in error.
labelHashSet errorFaces;
if (qualDictPtr.valid())
{
meshCheck::checkMesh(false, mesh, qualDictPtr(), errorFaces);
}
else
{
meshCheck::checkFacePyramids(mesh, false, -small, &errorFaces);
}
// Sets where the master is in error
labelHashSet errorSets;
forAll(allFaceSets, setI)
{
label newMasterI = map().reverseFaceMap()[allFaceSets[setI][0]];
if (errorFaces.found(newMasterI))
{
errorSets.insert(setI);
}
}
label nErrorSets = returnReduce(errorSets.size(), sumOp<label>());
Info<< "Detected " << nErrorSets
<< " error faces on boundaries that have been merged."
<< " These will be restored to their original faces."
<< endl;
if (nErrorSets > 0)
{
// Renumber stored faces to new vertex numbering.
forAllConstIter(labelHashSet, errorSets, iter)
{
label setI = iter.key();
faceList& setFaceVerts = allFaceSetsFaces[setI];
forAll(setFaceVerts, i)
{
inplaceRenumber(map().reversePointMap(), setFaceVerts[i]);
// Debug: check that all points are still there.
forAll(setFaceVerts[i], j)
{
label newVertI = setFaceVerts[i][j];
if (newVertI < 0)
{
FatalErrorInFunction
<< "In set:" << setI << " old face labels:"
<< allFaceSets[setI] << " new face vertices:"
<< setFaceVerts[i] << " are unmapped vertices!"
<< abort(FatalError);
}
}
}
}
// Topology changes container
polyTopoChange meshMod(mesh);
// Restore faces
forAllConstIter(labelHashSet, errorSets, iter)
{
label setI = iter.key();
const labelList& setFaces = allFaceSets[setI];
const faceList& setFaceVerts = allFaceSetsFaces[setI];
label newMasterI = map().reverseFaceMap()[setFaces[0]];
// Restore. Get face properties.
label own = mesh.faceOwner()[newMasterI];
label patchID = mesh.boundaryMesh().whichPatch(newMasterI);
Pout<< "Restoring new master face " << newMasterI
<< " to vertices " << setFaceVerts[0] << endl;
// Modify the master face.
meshMod.modifyFace
(
setFaceVerts[0], // original face
newMasterI, // label of face
own, // owner
-1, // neighbour
false, // face flip
patchID // patch for face
);
// Add the previously removed faces
for (label i = 1; i < setFaces.size(); i++)
{
Pout<< "Restoring removed face " << setFaces[i]
<< " with vertices " << setFaceVerts[i] << endl;
meshMod.addFace
(
setFaceVerts[i], // vertices
own, // owner,
-1, // neighbour,
newMasterI, // masterFaceID,
false, // flipFaceFlux,
patchID // patchID,
);
}
}
// Change the mesh
map = meshMod.changeMesh(mesh, true);
// Update fields
mesh.topoChange(map);
}
}
else
{
Info<< "No faces merged ..." << endl;
}
return nFaceSets;
}
// Remove points not used by any face or points used by only two faces where
// the edges are in line
label mergeEdges(const scalar minCos, polyMesh& mesh)
{
Info<< "Merging all points on surface that" << nl
<< "- are used by only two boundary faces and" << nl
<< "- make an angle with a cosine of more than " << minCos
<< "." << nl << endl;
// Point removal analysis engine
removePoints pointRemover(mesh);
// Count usage of points
boolList pointCanBeDeleted;
label nRemove = pointRemover.countPointUsage(minCos, pointCanBeDeleted);
if (nRemove > 0)
{
Info<< "Removing " << nRemove
<< " straight edge points ..." << endl;
// Topology changes container
polyTopoChange meshMod(mesh);
pointRemover.setRefinement(pointCanBeDeleted, meshMod);
// Change the mesh
autoPtr<polyTopoChangeMap> map = meshMod.changeMesh(mesh);
// Update fields
mesh.topoChange(map);
}
else
{
Info<< "No straight edges simplified and no points removed ..." << endl;
}
return nRemove;
}
int main(int argc, char *argv[])
{
#include "addOverwriteOption.H"
argList::validArgs.append("featureAngle [0..180]");
argList::addOption
(
"concaveAngle",
"degrees",
"specify concave angle [0..180] (default: 30 degrees)"
);
argList::addBoolOption
(
"meshQuality",
"read user-defined mesh quality criterions from system/meshQualityDict"
);
#include "setRootCase.H"
#include "createTimeNoFunctionObjects.H"
#include "createPolyMesh.H"
const word oldInstance = mesh.pointsInstance();
const scalar featureAngle = degToRad(args.argRead<scalar>(1));
const scalar minCos = Foam::cos(featureAngle);
// Sin of angle between two consecutive edges on a face.
// If sin(angle) larger than this the face will be considered concave.
const scalar concaveAngle =
degToRad(args.optionLookupOrDefault("concaveAngle", 30.0));
const scalar concaveSin = Foam::sin(concaveAngle);
const bool overwrite = args.optionFound("overwrite");
const bool meshQuality = args.optionFound("meshQuality");
Info<< "Merging all faces of a cell" << nl
<< " - which are on the same patch" << nl
<< " - which make an angle < " << radToDeg(featureAngle)
<< " degrees" << nl
<< " (cos:" << minCos << ')' << nl
<< " - even when resulting face becomes concave by more than "
<< radToDeg(concaveAngle) << " degrees" << nl
<< " (sin:" << concaveSin << ')' << nl
<< endl;
autoPtr<IOdictionary> qualDict;
if (meshQuality)
{
Info<< "Enabling user-defined geometry checks." << nl << endl;
qualDict.reset
(
new IOdictionary
(
IOobject
(
"meshQualityDict",
mesh.time().system(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
)
);
}
if (!overwrite)
{
runTime++;
}
// Merge faces on same patch
label nChanged = mergePatchFaces
(
minCos,
concaveSin,
qualDict,
runTime,
mesh
);
// Merge points on straight edges and remove unused points
if (qualDict.valid())
{
Info<< "Merging all 'loose' points on surface edges, "
<< "regardless of the angle they make." << endl;
// Surface bnound to be used to extrude. Merge all loose points.
nChanged += mergeEdges(-1, mesh);
}
else
{
nChanged += mergeEdges(minCos, mesh);
}
if (nChanged > 0)
{
if (overwrite)
{
mesh.setInstance(oldInstance);
}
Info<< "Writing morphed mesh to time " << runTime.name() << endl;
mesh.write();
}
else
{
Info<< "Mesh unchanged." << endl;
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //