Files
OpenFOAM-12/applications/utilities/mesh/advanced/splitCells/splitCells.C
Will Bainbridge 476bb42b04 unitConversion: Unit conversions on all input parameters
The majority of input parameters now support automatic unit conversion.
Units are specified within square brackets, either before or after the
value. Primitive parameters (e.g., scalars, vectors, tensors, ...),
dimensioned types, fields, Function1-s and Function2-s all support unit
conversion in this way.

Unit conversion occurs on input only. OpenFOAM writes out all fields and
parameters in standard units. It is recommended to use '.orig' files in
the 0 directory to preserve user-readable input if those files are being
modified by pre-processing applications (e.g., setFields).

For example, to specify a volumetric flow rate inlet boundary in litres
per second [l/s], rather than metres-cubed per second [m^3/s], in 0/U:

    boundaryField
    {
        inlet
        {
            type            flowRateInletVelocity;
            volumetricFlowRate 0.1 [l/s];
            value           $internalField;
        }

        ...
    }

Or, to specify the pressure field in bar, in 0/p:

    internalField   uniform 1 [bar];

Or, to convert the parameters of an Arrhenius reaction rate from a
cm-mol-kcal unit system, in constant/chemistryProperties:

    reactions
    {
        methaneReaction
        {
            type    irreversibleArrhenius;
            reaction "CH4^0.2 + 2O2^1.3 = CO2 + 2H2O";
            A       6.7e12 [(mol/cm^3)^-0.5/s];
            beta    0;
            Ea      48.4 [kcal/mol];
        }
    }

Or, to define a time-varying outlet pressure using a CSV file in which
the pressure column is in mega-pascals [MPa], in 0/p:

    boundaryField
    {
        outlet
        {
            type            uniformFixedValue;
            value
            {
                type            table;
                format          csv;
                nHeaderLine     1;
                units           ([s] [MPa]); // <-- new units entry
                columns         (0 1);
                mergeSeparators no;
                file            "data/pressure.csv";
                outOfBounds     clamp;
                interpolationScheme linear;
            }
        }

        ...
    }

(Note also that a new 'columns' entry replaces the old 'refColumn' and
'componentColumns'. This is is considered to be more intuitive, and has
a consistent syntax with the new 'units' entry. 'columns' and
'componentColumns' have been retained for backwards compatibility and
will continue to work for the time being.)

Unit definitions can be added in the global or case controlDict files.
See UnitConversions in $WM_PROJECT_DIR/etc/controlDict for examples.
Currently available units include:

    Standard: kg m s K kmol A Cd

     Derived: Hz N Pa J W g um mm cm km l ml us ms min hr mol
              rpm bar atm kPa MPa cal kcal cSt cP % rad rot deg

A user-time unit is also provided if user-time is in operation. This
allows it to be specified locally whether a parameter relates to
real-time or to user-time. For example, to define a mass source that
ramps up from a given engine-time (in crank-angle-degrees [CAD]) over a
duration in real-time, in constant/fvModels:

    massSource1
    {
        type        massSource;
        points      ((1 2 3));
        massFlowRate
        {
            type        scale;
            scale       linearRamp;
            start       20 [CAD];
            duration    50 [ms];
            value       0.1 [g/s];
        }
    }

Specified units will be checked against the parameter's dimensions where
possible, and an error generated if they are not consistent. For the
dimensions to be available for this check, the code requires
modification, and work propagating this change across OpenFOAM is
ongoing. Unit conversions are still possible without these changes, but
the validity of such conversions will not be checked.

Units are no longer permitted in 'dimensions' entries in field files.
These 'dimensions' entries can now, instead, take the names of
dimensions. The names of the available dimensions are:

    Standard: mass length time temperature
              moles current luminousIntensity

     Derived: area volume rate velocity momentum acceleration density
              force energy power pressure kinematicPressure
              compressibility gasConstant specificHeatCapacity
              kinematicViscosity dynamicViscosity thermalConductivity
              volumetricFlux massFlux

So, for example, a 0/epsilon file might specify the dimensions as
follows:

    dimensions      [energy/mass/time];

And a 0/alphat file might have:

    dimensions      [thermalConductivity/specificHeatCapacity];

*** Development Notes ***

A unit conversion can construct trivially from a dimension set,
resulting in a "standard" unit with a conversion factor of one. This
means the functions which perform unit conversion on read can be
provided dimension sets or unit conversion objects interchangeably.

A basic `dict.lookup<vector>("Umean")` call will do unit conversion, but
it does not know the parameter's dimensions, so it cannot check the
validity of the supplied units. A corresponding lookup function has been
added in which the dimensions or units can be provided; in this case the
corresponding call would be `dict.lookup<vector>("Umean", dimVelocity)`.
This function enables additional checking and should be used wherever
possible.

Function1-s and Function2-s have had their constructors and selectors
changed so that dimensions/units must be specified by calling code. In
the case of Function1, two unit arguments must be given; one for the
x-axis and one for the value-axis. For Function2-s, three must be
provided.

In some cases, it is desirable (or at least established practice), that
a given non-standard unit be used in the absence of specific
user-defined units. Commonly this includes reading angles in degrees
(rather than radians) and reading times in user-time (rather than
real-time). The primitive lookup functions and Function1 and Function2
selectors both support specifying a non-standard default unit. For
example, `theta_ = dict.lookup<scalar>("theta", unitDegrees)` will read
an angle in degrees by default. If this is done within a model which
also supports writing then the write call must be modified accordingly
so that the data is also written out in degrees. Overloads of writeEntry
have been created for this purpose. In this case, the angle theta should
be written out with `writeEntry(os, "theta", unitDegrees, theta_)`.
Function1-s and Function2-s behave similarly, but with greater numbers
of dimensions/units arguments as before.

The non-standard user-time unit can be accessed by a `userUnits()`
method that has been added to Time. Use of this user-time unit in the
construction of Function1-s should prevent the need for explicit
user-time conversion in boundary conditions and sub-models and similar.

Some models might contain non-typed stream-based lookups of the form
`dict.lookup("p0") >> p0_` (e.g., in a re-read method), or
`Umean_(dict.lookup("Umean"))` (e.g., in an initialiser list). These
calls cannot facilitate unit conversion and are therefore discouraged.
They should be replaced with
`p0_ = dict.lookup<scalar>("p0", dimPressure)` and
`Umean_(dict.lookup<vector>("Umean", dimVelocity))` and similar whenever
they are found.
2024-05-16 09:01:46 +01:00

714 lines
17 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2024 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
splitCells
Description
Utility to split cells with flat faces.
Uses a geometric cut with a plane dividing the edge angle into two so
might produce funny cells. For hexes it will use by default a cut from
edge onto opposite edge (i.e. purely topological).
Options:
- split cells from cellSet only
- use geometric cut for hexes as well
The angle is the angle between two faces sharing an edge as seen from
inside each cell. So a cube will have all angles 90. If you want
to split cells with cell centre outside use e.g. angle 200
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "polyTopoChange.H"
#include "polyTopoChangeMap.H"
#include "polyMesh.H"
#include "cellCuts.H"
#include "cellSet.H"
#include "cellModeller.H"
#include "meshCutter.H"
#include "geomCellLooper.H"
#include "plane.H"
#include "edgeVertex.H"
#include "meshTools.H"
#include "ListOps.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
labelList pack(const boolList& lst)
{
labelList packedLst(lst.size());
label packedI = 0;
forAll(lst, i)
{
if (lst[i])
{
packedLst[packedI++] = i;
}
}
packedLst.setSize(packedI);
return packedLst;
}
scalarField pack(const boolList& lst, const scalarField& elems)
{
scalarField packedElems(lst.size());
label packedI = 0;
forAll(lst, i)
{
if (lst[i])
{
packedElems[packedI++] = elems[i];
}
}
packedElems.setSize(packedI);
return packedElems;
}
// Given sin and cos of max angle between normals calculate whether f0 and f1
// on celli make larger angle. Uses sinAngle only for quadrant detection.
bool largerAngle
(
const primitiveMesh& mesh,
const scalar cosAngle,
const scalar sinAngle,
const label celli,
const label f0, // face label
const label f1,
const vector& n0, // normal at f0
const vector& n1
)
{
const labelList& own = mesh.faceOwner();
bool sameFaceOrder = !((own[f0] == celli) ^ (own[f1] == celli));
// Get cos between faceArea vectors. Correct so flat angle (180 degrees)
// gives -1.
scalar normalCosAngle = n0 & n1;
if (sameFaceOrder)
{
normalCosAngle = -normalCosAngle;
}
// Get cos between faceCentre and normal vector to determine in
// which quadrant angle is. (Is correct for unwarped faces only!)
// Correct for non-outwards pointing normal.
vector c1c0(mesh.faceCentres()[f1] - mesh.faceCentres()[f0]);
c1c0 /= mag(c1c0) + vSmall;
scalar fcCosAngle = n0 & c1c0;
if (own[f0] != celli)
{
fcCosAngle = -fcCosAngle;
}
if (sinAngle < 0.0)
{
// Looking for concave angles (quadrant 3 or 4)
if (fcCosAngle <= 0)
{
// Angle is convex so smaller.
return false;
}
else
{
if (normalCosAngle < cosAngle)
{
return false;
}
else
{
return true;
}
}
}
else
{
// Looking for convex angles (quadrant 1 or 2)
if (fcCosAngle > 0)
{
// Concave angle
return true;
}
else
{
// Convex. Check cos of normal vectors.
if (normalCosAngle > cosAngle)
{
return false;
}
else
{
return true;
}
}
}
}
// Split hex (and hex only) along edgeI creating two prisms
bool splitHex
(
const polyMesh& mesh,
const label celli,
const label edgeI,
DynamicList<label>& cutCells,
DynamicList<labelList>& cellLoops,
DynamicList<scalarField>& cellEdgeWeights
)
{
// cut handling functions
edgeVertex ev(mesh);
const edgeList& edges = mesh.edges();
const faceList& faces = mesh.faces();
const edge& e = edges[edgeI];
// Get faces on the side, i.e. faces not using edge but still using one of
// the edge endpoints.
label leftI = -1;
label rightI = -1;
label leftFp = -1;
label rightFp = -1;
const cell& cFaces = mesh.cells()[celli];
forAll(cFaces, i)
{
label facei = cFaces[i];
const face& f = faces[facei];
label fp0 = findIndex(f, e[0]);
label fp1 = findIndex(f, e[1]);
if (fp0 == -1)
{
if (fp1 != -1)
{
// Face uses e[1] but not e[0]
rightI = facei;
rightFp = fp1;
if (leftI != -1)
{
// Have both faces so exit
break;
}
}
}
else
{
if (fp1 != -1)
{
// Face uses both e[1] and e[0]
}
else
{
leftI = facei;
leftFp = fp0;
if (rightI != -1)
{
break;
}
}
}
}
if (leftI == -1 || rightI == -1)
{
FatalErrorInFunction
<< " rightI:" << rightI << abort(FatalError);
}
// Walk two vertices further on faces.
const face& leftF = faces[leftI];
label leftV = leftF[(leftFp + 2) % leftF.size()];
const face& rightF = faces[rightI];
label rightV = rightF[(rightFp + 2) % rightF.size()];
labelList loop(4);
loop[0] = ev.vertToEVert(e[0]);
loop[1] = ev.vertToEVert(leftV);
loop[2] = ev.vertToEVert(rightV);
loop[3] = ev.vertToEVert(e[1]);
scalarField loopWeights(4);
loopWeights[0] = -great;
loopWeights[1] = -great;
loopWeights[2] = -great;
loopWeights[3] = -great;
cutCells.append(celli);
cellLoops.append(loop);
cellEdgeWeights.append(loopWeights);
return true;
}
// Split celli along edgeI with a plane along halfNorm direction.
bool splitCell
(
const polyMesh& mesh,
const geomCellLooper& cellCutter,
const label celli,
const label edgeI,
const vector& halfNorm,
const boolList& vertIsCut,
const boolList& edgeIsCut,
const scalarField& edgeWeight,
DynamicList<label>& cutCells,
DynamicList<labelList>& cellLoops,
DynamicList<scalarField>& cellEdgeWeights
)
{
const edge& e = mesh.edges()[edgeI];
vector eVec = e.vec(mesh.points());
eVec /= mag(eVec);
vector planeN = eVec ^ halfNorm;
// Slightly tilt plane to make it not cut edges exactly
// halfway on fully regular meshes (since we want cuts
// to be snapped to vertices)
planeN += 0.01*halfNorm;
planeN /= mag(planeN);
// Define plane through edge
plane cutPlane(mesh.points()[e.start()], planeN);
labelList loop;
scalarField loopWeights;
if
(
cellCutter.cut
(
cutPlane,
celli,
vertIsCut,
edgeIsCut,
edgeWeight,
loop,
loopWeights
)
)
{
// Did manage to cut cell. Copy into overall list.
cutCells.append(celli);
cellLoops.append(loop);
cellEdgeWeights.append(loopWeights);
return true;
}
else
{
return false;
}
}
// Collects cuts for all cells in cellSet
void collectCuts
(
const polyMesh& mesh,
const geomCellLooper& cellCutter,
const bool geometry,
const scalar minCos,
const scalar minSin,
const cellSet& cellsToCut,
DynamicList<label>& cutCells,
DynamicList<labelList>& cellLoops,
DynamicList<scalarField>& cellEdgeWeights
)
{
// Get data from mesh
const cellShapeList& cellShapes = mesh.cellShapes();
const labelList& own = mesh.faceOwner();
const labelListList& cellEdges = mesh.cellEdges();
const vectorField& faceAreas = mesh.faceAreas();
// Hex shape
const cellModel& hex = *(cellModeller::lookup("hex"));
// cut handling functions
edgeVertex ev(mesh);
// Cut information per mesh entity
boolList vertIsCut(mesh.nPoints(), false);
boolList edgeIsCut(mesh.nEdges(), false);
scalarField edgeWeight(mesh.nEdges(), -great);
forAllConstIter(cellSet, cellsToCut, iter)
{
const label celli = iter.key();
const labelList& cEdges = cellEdges[celli];
forAll(cEdges, i)
{
label edgeI = cEdges[i];
label f0, f1;
meshTools::getEdgeFaces(mesh, celli, edgeI, f0, f1);
vector n0 = faceAreas[f0];
n0 /= mag(n0);
vector n1 = faceAreas[f1];
n1 /= mag(n1);
if
(
largerAngle
(
mesh,
minCos,
minSin,
celli,
f0,
f1,
n0,
n1
)
)
{
bool splitOk = false;
if (!geometry && cellShapes[celli].model() == hex)
{
splitOk =
splitHex
(
mesh,
celli,
edgeI,
cutCells,
cellLoops,
cellEdgeWeights
);
}
else
{
vector halfNorm;
if ((own[f0] == celli) ^ (own[f1] == celli))
{
// Opposite owner orientation
halfNorm = 0.5*(n0 - n1);
}
else
{
// Faces have same owner or same neighbour so
// normals point in same direction
halfNorm = 0.5*(n0 + n1);
}
splitOk =
splitCell
(
mesh,
cellCutter,
celli,
edgeI,
halfNorm,
vertIsCut,
edgeIsCut,
edgeWeight,
cutCells,
cellLoops,
cellEdgeWeights
);
}
if (splitOk)
{
// Update cell/edge/vertex wise info.
label index = cellLoops.size() - 1;
const labelList& loop = cellLoops[index];
const scalarField& loopWeights = cellEdgeWeights[index];
forAll(loop, i)
{
label cut = loop[i];
if (ev.isEdge(cut))
{
edgeIsCut[ev.getEdge(cut)] = true;
edgeWeight[ev.getEdge(cut)] = loopWeights[i];
}
else
{
vertIsCut[ev.getVertex(cut)] = true;
}
}
// Stop checking edges for this cell.
break;
}
}
}
}
cutCells.shrink();
cellLoops.shrink();
cellEdgeWeights.shrink();
}
int main(int argc, char *argv[])
{
argList::addNote
(
"split cells with flat faces"
);
#include "addOverwriteOption.H"
argList::noParallel();
argList::validArgs.append("edgeAngle [0..360]");
argList::addOption
(
"set",
"name",
"split cells from specified cellSet only"
);
argList::addBoolOption
(
"geometry",
"use geometric cut for hexes as well"
);
argList::addOption
(
"tol",
"scalar", "edge snap tolerance (default 0.2)"
);
#include "setRootCase.H"
#include "createTimeNoFunctionObjects.H"
#include "createPolyMesh.H"
const word oldInstance = mesh.pointsInstance();
const scalar featureAngle = degToRad(args.argRead<scalar>(1));
const scalar minCos = Foam::cos(featureAngle);
const scalar minSin = Foam::sin(featureAngle);
const bool readSet = args.optionFound("set");
const bool geometry = args.optionFound("geometry");
const bool overwrite = args.optionFound("overwrite");
const scalar edgeTol = args.optionLookupOrDefault("tol", 0.2);
Info<< "Trying to split cells with internal angles > feature angle\n" << nl
<< "featureAngle : " << radToDeg(featureAngle) << nl
<< "edge snapping tol : " << edgeTol << nl;
if (readSet)
{
Info<< "candidate cells : cellSet " << args["set"] << nl;
}
else
{
Info<< "candidate cells : all cells" << nl;
}
if (geometry)
{
Info<< "hex cuts : geometric; using edge tolerance" << nl;
}
else
{
Info<< "hex cuts : topological; cut to opposite edge" << nl;
}
Info<< endl;
// Cell circumference cutter
geomCellLooper cellCutter(mesh);
// Snap all edge cuts close to endpoints to vertices.
geomCellLooper::setSnapTol(edgeTol);
// Candidate cells to cut
cellSet cellsToCut(mesh, "cellsToCut", mesh.nCells()/100);
if (readSet)
{
// Read cells to cut from cellSet
cellSet cells(mesh, args["set"]);
cellsToCut = cells;
}
while (true)
{
if (!readSet)
{
// Try all cells for cutting
for (label celli = 0; celli < mesh.nCells(); celli++)
{
cellsToCut.insert(celli);
}
}
// Cut information per cut cell
DynamicList<label> cutCells(mesh.nCells()/10 + 10);
DynamicList<labelList> cellLoops(mesh.nCells()/10 + 10);
DynamicList<scalarField> cellEdgeWeights(mesh.nCells()/10 + 10);
collectCuts
(
mesh,
cellCutter,
geometry,
minCos,
minSin,
cellsToCut,
cutCells,
cellLoops,
cellEdgeWeights
);
cellSet cutSet(mesh, "cutSet", cutCells.size());
forAll(cutCells, i)
{
cutSet.insert(cutCells[i]);
}
// Gets cuts across cells from cuts through edges.
Info<< "Writing " << cutSet.size() << " cells to cut to cellSet "
<< cutSet.instance()/cutSet.local()/cutSet.name()
<< endl << endl;
cutSet.write();
// Analyze cuts for clashes.
cellCuts cuts
(
mesh,
cutCells, // cells candidate for cutting
cellLoops,
cellEdgeWeights
);
Info<< "Actually cut cells:" << cuts.nLoops() << nl << endl;
if (cuts.nLoops() == 0)
{
break;
}
// Remove cut cells from cellsToCut (Note:only relevant if -readSet)
forAll(cuts.cellLoops(), celli)
{
if (cuts.cellLoops()[celli].size())
{
// Info<< "Removing cut cell " << celli << " from wishlist"
// << endl;
cellsToCut.erase(celli);
}
}
// At least some cells are cut.
polyTopoChange meshMod(mesh);
// Cutting engine
meshCutter cutter(mesh);
// Insert mesh refinement into polyTopoChange.
cutter.setRefinement(cuts, meshMod);
// Do all changes
Info<< "Morphing ..." << endl;
if (!overwrite)
{
runTime++;
}
autoPtr<polyTopoChangeMap> map = meshMod.changeMesh(mesh);
// Update stored labels on meshCutter
cutter.topoChange(map());
// Update cellSet
cellsToCut.topoChange(map());
Info<< "Remaining:" << cellsToCut.size() << endl;
// Write resulting mesh
if (overwrite)
{
mesh.setInstance(oldInstance);
}
Info<< "Writing refined morphMesh to time " << runTime.name()
<< endl;
mesh.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //