Files
OpenFOAM-12/applications/solvers/modules/multiphaseEuler/functionObjects/wallBoilingProperties/wallBoilingProperties.C
Will Bainbridge 377080de52 compressible::alphatWallBoilingWallFunction: Improved solution procedure
This boundary condition now solves for the wall temperature by interval
bisection, which should be significantly more robust than the previous
fixed-point iteration procedure. There is a new non-dimensional
"tolerance" setting that controls how tightly this solution procedure
solves the wall temperature. The "relax" setting is no longer used.

The boundary condition no longer triggers re-evaluation of the
temperature condition in order to re-calculate the heat flux within the
solution iteration. Instead, it extracts physical coefficients from the
form of the boundary condition and uses these to form a linearised
approximation of the heat flux. This is a more general approach, and
will not trigger side-effects associated with re-evaluating the
temperature condition.

The fixedMultiphaseHeatFlux condition has been replaced by a
uniformFixedMultiphaseHeatFlux condition, which constructs a mixed
constraint which portions a specified heat flux between the phases in
such a way as to keep the boundary temperature uniform across all
phases. This can be applied to all phases. It is no longer necessary to
apply a heat flux model to one "master" phase, then map the resulting
temperature to the others. An example specification of this boundary
condition is as follows:

    wall
    {
        type            uniformFixedMultiphaseHeatFlux;
        q               1000;
        relax           0.3;
        value           $internalField;
    }

The wall boiling tutorials have been updated to use these new functions,
and time-varying heat input has been used to replace the
stop-modify-restart pattern present in the single-region cases.
2023-01-24 10:28:59 +00:00

199 lines
5.6 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2022-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "wallBoilingProperties.H"
#include "addToRunTimeSelectionTable.H"
#include "alphatWallBoilingWallFunctionFvPatchScalarField.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace functionObjects
{
defineTypeNameAndDebug(wallBoilingProperties, 0);
addToRunTimeSelectionTable
(
functionObject,
wallBoilingProperties,
dictionary
);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::wallBoilingProperties::wallBoilingProperties
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
fvMeshFunctionObject(name, runTime, dict),
phase_
(
mesh_.lookupObject<phaseModel>
(
IOobject::groupName("alpha", dict.lookup("phase"))
)
),
fluid_(mesh_.lookupObject<phaseSystem>("phaseProperties"))
{
read(dict);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::functionObjects::wallBoilingProperties::~wallBoilingProperties()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::wallBoilingProperties::read(const dictionary& dict)
{
fvMeshFunctionObject::read(dict);
return true;
}
bool Foam::functionObjects::wallBoilingProperties::execute()
{
return true;
}
bool Foam::functionObjects::wallBoilingProperties::write()
{
volScalarField dDeparture
(
volScalarField::New
(
IOobject::groupName("dDeparture", phase_.name()),
mesh_,
dimensionedScalar(dimLength, 0)
)
);
volScalarField fDeparture
(
volScalarField::New
(
IOobject::groupName("fDeparture", phase_.name()),
mesh_,
dimensionedScalar(inv(dimTime), 0)
)
);
volScalarField nucleationSiteDensity
(
volScalarField::New
(
IOobject::groupName("nucleationSiteDensity", phase_.name()),
mesh_,
dimensionedScalar(inv(dimArea), 0)
)
);
volScalarField wetFraction
(
volScalarField::New
(
IOobject::groupName("wetFraction", phase_.name()),
mesh_,
dimensionedScalar(dimless, 0)
)
);
volScalarField qQuenching
(
volScalarField::New
(
IOobject::groupName("qQuenching", phase_.name()),
mesh_,
dimensionedScalar(dimEnergy*inv(dimTime*dimArea), 0)
)
);
volScalarField qEvaporative
(
volScalarField::New
(
IOobject::groupName("qEvaporative", phase_.name()),
mesh_,
dimensionedScalar(dimEnergy*inv(dimTime*dimArea), 0)
)
);
typedef compressible::alphatWallBoilingWallFunctionFvPatchScalarField
alphatWallBoilingWallFunction;
const word alphatName =
IOobject::groupName("alphat", phase_.name());
if (phase_.mesh().foundObject<volScalarField>(alphatName))
{
const volScalarField& alphat =
phase_.mesh().lookupObject<volScalarField>(alphatName);
const volScalarField::Boundary& alphatBf = alphat.boundaryField();
forAll(alphatBf, patchi)
{
if (isA<alphatWallBoilingWallFunction>(alphatBf[patchi]))
{
const alphatWallBoilingWallFunction& alphatw =
refCast<const alphatWallBoilingWallFunction>
(alphatBf[patchi]);
dDeparture.boundaryFieldRef()[patchi] =
alphatw.dDeparture();
fDeparture.boundaryFieldRef()[patchi] =
alphatw.fDeparture();
nucleationSiteDensity.boundaryFieldRef()[patchi] =
alphatw.nucleationSiteDensity();
wetFraction.boundaryFieldRef()[patchi] =
alphatw.wetFraction();
qQuenching.boundaryFieldRef()[patchi] =
alphatw.qQuenching();
qEvaporative.boundaryFieldRef()[patchi] =
alphatw.qEvaporative();
}
}
}
dDeparture.write();
fDeparture.write();
nucleationSiteDensity.write();
wetFraction.write();
qQuenching.write();
qEvaporative.write();
return true;
}
// ************************************************************************* //