Files
OpenFOAM-12/applications/modules/multiphaseEuler/functionObjects/populationBalanceMoments/populationBalanceMoments.C
Henry Weller e744fdb5f1 Modular solvers: Reorganised directory structure of applications and tutorials
The new flexible and extensible modular solvers structure already provides most
of the simulation functionality needed for single phase, multiphase,
multicomponent etc. fluid flow problems as well as a very effective method of
combining these with solid heat transfer, solid stress, surface film to solve
complex multi-region, multi-physics problems and are now the primary mechanism
for the further development of OpenFOAM simulation capability in future.  To
emphasis this for both users and developers the applications/solvers directory
has been separated into applications/modules containing all the solver modules:

├── modules
│   ├── compressibleMultiphaseVoF
│   ├── compressibleVoF
│   ├── film
│   ├── fluid
│   ├── fluidSolver
│   ├── functions
│   ├── incompressibleDenseParticleFluid
│   ├── incompressibleDriftFlux
│   ├── incompressibleFluid
│   ├── incompressibleMultiphaseVoF
│   ├── incompressibleVoF
│   ├── isothermalFilm
│   ├── isothermalFluid
│   ├── movingMesh
│   ├── multicomponentFluid
│   ├── multiphaseEuler
│   ├── multiphaseVoFSolver
│   ├── shockFluid
│   ├── solid
│   ├── solidDisplacement
│   ├── twoPhaseSolver
│   ├── twoPhaseVoFSolver
│   ├── VoFSolver
│   └── XiFluid

applications/solvers containing the foamRun and foamMultiRun solver applications
which instantiate and execute the chosen solver modules and also standalone
solver applications for special initialisation and test activities:

├── solvers
│   ├── boundaryFoam
│   ├── chemFoam
│   ├── foamMultiRun
│   ├── foamRun
│   └── potentialFoam

and applications/legacy containing legacy solver applications which are not
currently being actively developed but the functionality of which will be merged
into the solver modules or form the basis of new solver modules as the need
arises:

├── legacy
│   ├── basic
│   │   ├── financialFoam
│   │   └── laplacianFoam
│   ├── combustion
│   │   └── PDRFoam
│   ├── compressible
│   │   └── rhoPorousSimpleFoam
│   ├── electromagnetics
│   │   ├── electrostaticFoam
│   │   ├── magneticFoam
│   │   └── mhdFoam
│   ├── incompressible
│   │   ├── adjointShapeOptimisationFoam
│   │   ├── dnsFoam
│   │   ├── icoFoam
│   │   ├── porousSimpleFoam
│   │   └── shallowWaterFoam
│   └── lagrangian
│       ├── dsmcFoam
│       ├── mdEquilibrationFoam
│       └── mdFoam

Correspondingly the tutorials directory structure has been reorganised with the
modular solver directories at the top level with names that make it easier for
users to find example cases relating to their particular requirements and a
legacy sub-directory containing cases corresponding to the legacy solver
applications listed above:

├── compressibleMultiphaseVoF
│   └── damBreak4phaseLaminar
├── compressibleVoF
│   ├── ballValve
│   ├── climbingRod
│   ├── damBreak
│   ├── depthCharge2D
│   ├── depthCharge3D
│   ├── sloshingTank2D
│   └── throttle
├── film
│   └── rivuletPanel
├── fluid
│   ├── aerofoilNACA0012
│   ├── aerofoilNACA0012Steady
│   ├── angledDuct
│   ├── angledDuctExplicitFixedCoeff
│   ├── angledDuctLTS
│   ├── annularThermalMixer
│   ├── BernardCells
│   ├── blockedChannel
│   ├── buoyantCavity
│   ├── cavity
│   ├── decompressionTank
│   ├── externalCoupledCavity
│   ├── forwardStep
│   ├── helmholtzResonance
│   ├── hotRadiationRoom
│   ├── hotRadiationRoomFvDOM
│   ├── hotRoom
│   ├── hotRoomBoussinesq
│   ├── hotRoomBoussinesqSteady
│   ├── hotRoomComfort
│   ├── iglooWithFridges
│   ├── mixerVessel2DMRF
│   ├── nacaAirfoil
│   ├── pitzDaily
│   ├── prism
│   ├── shockTube
│   ├── squareBend
│   ├── squareBendLiq
│   └── squareBendLiqSteady
├── incompressibleDenseParticleFluid
│   ├── column
│   ├── cyclone
│   ├── Goldschmidt
│   ├── GoldschmidtMPPIC
│   └── injectionChannel
├── incompressibleDriftFlux
│   ├── dahl
│   ├── mixerVessel2DMRF
│   └── tank3D
├── incompressibleFluid
│   ├── airFoil2D
│   ├── ballValve
│   ├── blockedChannel
│   ├── cavity
│   ├── cavityCoupledU
│   ├── channel395
│   ├── drivaerFastback
│   ├── ductSecondaryFlow
│   ├── elipsekkLOmega
│   ├── flowWithOpenBoundary
│   ├── hopperParticles
│   ├── impeller
│   ├── mixerSRF
│   ├── mixerVessel2D
│   ├── mixerVessel2DMRF
│   ├── mixerVesselHorizontal2DParticles
│   ├── motorBike
│   ├── motorBikeSteady
│   ├── movingCone
│   ├── offsetCylinder
│   ├── oscillatingInlet
│   ├── pipeCyclic
│   ├── pitzDaily
│   ├── pitzDailyLES
│   ├── pitzDailyLESDevelopedInlet
│   ├── pitzDailyLTS
│   ├── pitzDailyPulse
│   ├── pitzDailyScalarTransport
│   ├── pitzDailySteady
│   ├── pitzDailySteadyExperimentalInlet
│   ├── pitzDailySteadyMappedToPart
│   ├── pitzDailySteadyMappedToRefined
│   ├── planarContraction
│   ├── planarCouette
│   ├── planarPoiseuille
│   ├── porousBlockage
│   ├── propeller
│   ├── roomResidenceTime
│   ├── rotor2DRotating
│   ├── rotor2DSRF
│   ├── rotorDisk
│   ├── T3A
│   ├── TJunction
│   ├── TJunctionFan
│   ├── turbineSiting
│   ├── waveSubSurface
│   ├── windAroundBuildings
│   └── wingMotion
├── incompressibleMultiphaseVoF
│   ├── damBreak4phase
│   ├── damBreak4phaseFineLaminar
│   ├── damBreak4phaseLaminar
│   └── mixerVessel2DMRF
├── incompressibleVoF
│   ├── angledDuct
│   ├── capillaryRise
│   ├── cavitatingBullet
│   ├── climbingRod
│   ├── containerDischarge2D
│   ├── damBreak
│   ├── damBreakLaminar
│   ├── damBreakPorousBaffle
│   ├── damBreakWithObstacle
│   ├── DTCHull
│   ├── DTCHullMoving
│   ├── DTCHullWave
│   ├── floatingObject
│   ├── floatingObjectWaves
│   ├── forcedUpstreamWave
│   ├── mixerVessel
│   ├── mixerVessel2DMRF
│   ├── mixerVesselHorizontal2D
│   ├── nozzleFlow2D
│   ├── planingHullW3
│   ├── propeller
│   ├── sloshingCylinder
│   ├── sloshingTank2D
│   ├── sloshingTank2D3DoF
│   ├── sloshingTank3D
│   ├── sloshingTank3D3DoF
│   ├── sloshingTank3D6DoF
│   ├── testTubeMixer
│   ├── waterChannel
│   ├── wave
│   ├── wave3D
│   └── weirOverflow
├── isothermalFilm
│   └── rivuletPanel
├── isothermalFluid
│   ├── potentialFreeSurfaceMovingOscillatingBox
│   └── potentialFreeSurfaceOscillatingBox
├── legacy
│   ├── basic
│   │   ├── financialFoam
│   │   │   └── europeanCall
│   │   └── laplacianFoam
│   │       └── flange
│   ├── combustion
│   │   └── PDRFoam
│   │       └── flamePropagationWithObstacles
│   ├── compressible
│   │   └── rhoPorousSimpleFoam
│   │       ├── angledDuctExplicit
│   │       └── angledDuctImplicit
│   ├── electromagnetics
│   │   ├── electrostaticFoam
│   │   │   └── chargedWire
│   │   └── mhdFoam
│   │       └── hartmann
│   ├── incompressible
│   │   ├── adjointShapeOptimisationFoam
│   │   │   └── pitzDaily
│   │   ├── dnsFoam
│   │   │   └── boxTurb16
│   │   ├── icoFoam
│   │   │   ├── cavity
│   │   │   └── elbow
│   │   ├── porousSimpleFoam
│   │   │   ├── angledDuctExplicit
│   │   │   └── angledDuctImplicit
│   │   └── shallowWaterFoam
│   │       └── squareBump
│   ├── lagrangian
│   │   ├── dsmcFoam
│   │   │   ├── freeSpacePeriodic
│   │   │   ├── freeSpaceStream
│   │   │   ├── supersonicCorner
│   │   │   └── wedge15Ma5
│   │   ├── mdEquilibrationFoam
│   │   │   ├── periodicCubeArgon
│   │   │   └── periodicCubeWater
│   │   └── mdFoam
│   │       └── nanoNozzle
├── mesh
│   ├── blockMesh
│   │   ├── pipe
│   │   ├── sphere
│   │   ├── sphere7
│   │   └── sphere7ProjectedEdges
│   ├── refineMesh
│   │   └── refineFieldDirs
│   └── snappyHexMesh
│       ├── flange
│       └── pipe
├── movingMesh
│   └── SnakeRiverCanyon
├── multicomponentFluid
│   ├── aachenBomb
│   ├── counterFlowFlame2D
│   ├── counterFlowFlame2D_GRI
│   ├── counterFlowFlame2D_GRI_TDAC
│   ├── counterFlowFlame2DLTS
│   ├── counterFlowFlame2DLTS_GRI_TDAC
│   ├── DLR_A_LTS
│   ├── filter
│   ├── lockExchange
│   ├── membrane
│   ├── nc7h16
│   ├── parcelInBox
│   ├── SandiaD_LTS
│   ├── simplifiedSiwek
│   ├── smallPoolFire2D
│   ├── smallPoolFire3D
│   ├── verticalChannel
│   ├── verticalChannelLTS
│   └── verticalChannelSteady
├── multiphaseEuler
│   ├── bed
│   ├── bubbleColumn
│   ├── bubbleColumnEvaporating
│   ├── bubbleColumnEvaporatingDissolving
│   ├── bubbleColumnEvaporatingReacting
│   ├── bubbleColumnIATE
│   ├── bubbleColumnLaminar
│   ├── bubbleColumnLES
│   ├── bubblePipe
│   ├── damBreak4phase
│   ├── fluidisedBed
│   ├── fluidisedBedLaminar
│   ├── Grossetete
│   ├── hydrofoil
│   ├── injection
│   ├── LBend
│   ├── mixerVessel2D
│   ├── mixerVessel2DMRF
│   ├── pipeBend
│   ├── steamInjection
│   ├── titaniaSynthesis
│   ├── titaniaSynthesisSurface
│   ├── wallBoilingIATE
│   ├── wallBoilingPolydisperse
│   └── wallBoilingPolydisperseTwoGroups
├── multiRegion
│   ├── CHT
│   │   ├── circuitBoardCooling
│   │   ├── coolingCylinder2D
│   │   ├── coolingSphere
│   │   ├── heatedDuct
│   │   ├── heatExchanger
│   │   ├── multiphaseCoolingCylinder2D
│   │   ├── reverseBurner
│   │   ├── shellAndTubeHeatExchanger
│   │   ├── VoFcoolingCylinder2D
│   │   └── wallBoiling
│   └── film
│       ├── cylinder
│       ├── cylinderDripping
│       ├── cylinderVoF
│       ├── hotBoxes
│       ├── rivuletBox
│       ├── rivuletPanel
│       ├── splashPanel
│       └── VoFToFilm
├── potentialFoam
│   ├── cylinder
│   └── pitzDaily
├── resources
│   ├── blockMesh
│   ├── geometry
│   └── thermoData
├── shockFluid
│   ├── biconic25-55Run35
│   ├── forwardStep
│   ├── LadenburgJet60psi
│   ├── movingCone
│   ├── obliqueShock
│   ├── shockTube
│   └── wedge15Ma5
├── solidDisplacement
│   ├── beamEndLoad
│   └── plateHole
└── XiFluid
    ├── kivaTest
    └── moriyoshiHomogeneous
2023-05-25 18:14:41 +01:00

983 lines
23 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2022-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "populationBalanceMoments.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace functionObjects
{
defineTypeNameAndDebug(populationBalanceMoments, 0);
addToRunTimeSelectionTable
(
functionObject,
populationBalanceMoments,
dictionary
);
}
}
namespace Foam
{
template<>
const char* NamedEnum
<
Foam::functionObjects::populationBalanceMoments::momentType,
4
>::names[] = {"integerMoment", "mean", "variance", "stdDev"};
}
const Foam::NamedEnum
<
Foam::functionObjects::populationBalanceMoments::momentType,
4
>
Foam::functionObjects::populationBalanceMoments::momentTypeNames_;
namespace Foam
{
template<>
const char* NamedEnum
<
Foam::functionObjects::populationBalanceMoments::coordinateType,
3
>::names[] = {"volume", "area", "diameter"};
}
const Foam::NamedEnum
<
Foam::functionObjects::populationBalanceMoments::coordinateType,
3
>
Foam::functionObjects::populationBalanceMoments::coordinateTypeNames_;
namespace Foam
{
template<>
const char* NamedEnum
<
Foam::functionObjects::populationBalanceMoments::weightType,
3
>::names[] =
{
"numberConcentration",
"volumeConcentration",
"areaConcentration"
};
}
const Foam::NamedEnum
<
Foam::functionObjects::populationBalanceMoments::weightType,
3
>
Foam::functionObjects::populationBalanceMoments::weightTypeNames_;
namespace Foam
{
template<>
const char* NamedEnum
<
Foam::functionObjects::populationBalanceMoments::meanType,
3
>::names[] = {"arithmetic", "geometric", "notApplicable"};
}
const Foam::NamedEnum
<
Foam::functionObjects::populationBalanceMoments::meanType,
3
>
Foam::functionObjects::populationBalanceMoments::meanTypeNames_;
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
Foam::word
Foam::functionObjects::populationBalanceMoments::coordinateTypeSymbolicName()
{
word coordinateTypeSymbolicName(word::null);
switch (coordinateType_)
{
case coordinateType::volume:
{
coordinateTypeSymbolicName = "v";
break;
}
case coordinateType::area:
{
coordinateTypeSymbolicName = "a";
break;
}
case coordinateType::diameter:
{
coordinateTypeSymbolicName = "d";
break;
}
}
return coordinateTypeSymbolicName;
}
Foam::word
Foam::functionObjects::populationBalanceMoments::weightTypeSymbolicName()
{
word weightTypeSymbolicName(word::null);
switch (weightType_)
{
case weightType::numberConcentration:
{
weightTypeSymbolicName = "N";
break;
}
case weightType::volumeConcentration:
{
weightTypeSymbolicName = "V";
break;
}
case weightType::areaConcentration:
{
weightTypeSymbolicName = "A";
break;
}
}
return weightTypeSymbolicName;
}
Foam::word Foam::functionObjects::populationBalanceMoments::defaultFldName()
{
word meanName
(
meanType_ == meanType::geometric
? word(meanTypeNames_[meanType_]).capitalise()
: word("")
);
return
word
(
IOobject::groupName
(
"weighted"
+ meanName
+ word(momentTypeNames_[momentType_]).capitalise()
+ "("
+ weightTypeSymbolicName()
+ ","
+ coordinateTypeSymbolicName()
+ ")",
popBal_.name()
)
);
}
Foam::word
Foam::functionObjects::populationBalanceMoments::integerMomentFldName()
{
return
word
(
IOobject::groupName
(
word(momentTypeNames_[momentType_])
+ Foam::name(order_)
+ "("
+ weightTypeSymbolicName()
+ ","
+ coordinateTypeSymbolicName()
+ ")",
popBal_.name()
)
);
}
void Foam::functionObjects::populationBalanceMoments::setDimensions
(
volScalarField& fld,
momentType momType
)
{
switch (momType)
{
case momentType::integerMoment:
{
switch (coordinateType_)
{
case coordinateType::volume:
{
fld.dimensions().reset
(
pow(dimVolume, order_)/dimVolume
);
break;
}
case coordinateType::area:
{
fld.dimensions().reset
(
pow(dimArea, order_)/dimVolume
);
break;
}
case coordinateType::diameter:
{
fld.dimensions().reset
(
pow(dimLength, order_)/dimVolume
);
break;
}
}
switch (weightType_)
{
case weightType::volumeConcentration:
{
fld.dimensions().reset(fld.dimensions()*dimVolume);
break;
}
case weightType::areaConcentration:
{
fld.dimensions().reset(fld.dimensions()*dimArea);
break;
}
default:
{
break;
}
}
break;
}
case momentType::mean:
{
switch (coordinateType_)
{
case coordinateType::volume:
{
fld.dimensions().reset(dimVolume);
break;
}
case coordinateType::area:
{
fld.dimensions().reset(dimArea);
break;
}
case coordinateType::diameter:
{
fld.dimensions().reset(dimLength);
break;
}
}
break;
}
case momentType::variance:
{
switch (coordinateType_)
{
case coordinateType::volume:
{
fld.dimensions().reset(sqr(dimVolume));
break;
}
case coordinateType::area:
{
fld.dimensions().reset(sqr(dimArea));
break;
}
case coordinateType::diameter:
{
fld.dimensions().reset(sqr(dimLength));
break;
}
}
if (meanType_ == meanType::geometric)
{
fld.dimensions().reset(dimless);
}
break;
}
case momentType::stdDev:
{
switch (coordinateType_)
{
case coordinateType::volume:
{
fld.dimensions().reset(dimVolume);
break;
}
case coordinateType::area:
{
fld.dimensions().reset(dimArea);
break;
}
case coordinateType::diameter:
{
fld.dimensions().reset(dimLength);
break;
}
}
if (meanType_ == meanType::geometric)
{
fld.dimensions().reset(dimless);
}
break;
}
}
}
Foam::tmp<Foam::volScalarField>
Foam::functionObjects::populationBalanceMoments::totalConcentration()
{
tmp<volScalarField> tTotalConcentration
(
volScalarField::New
(
"totalConcentration",
mesh_,
dimensionedScalar(inv(dimVolume), Zero)
)
);
volScalarField& totalConcentration = tTotalConcentration.ref();
switch (weightType_)
{
case weightType::volumeConcentration:
{
totalConcentration.dimensions().reset
(
totalConcentration.dimensions()*dimVolume
);
break;
}
case weightType::areaConcentration:
{
totalConcentration.dimensions().reset
(
totalConcentration.dimensions()*dimArea
);
break;
}
default:
{
break;
}
}
forAll(popBal_.sizeGroups(), i)
{
const Foam::diameterModels::sizeGroup& fi = popBal_.sizeGroups()[i];
switch (weightType_)
{
case weightType::numberConcentration:
{
totalConcentration += fi*fi.phase()/fi.x();
break;
}
case weightType::volumeConcentration:
{
totalConcentration += fi*fi.phase();
break;
}
case weightType::areaConcentration:
{
totalConcentration += fi.a()*fi*fi.phase()/fi.x();
break;
}
}
}
return tTotalConcentration;
}
Foam::tmp<Foam::volScalarField>
Foam::functionObjects::populationBalanceMoments::mean()
{
tmp<volScalarField> tMean
(
volScalarField::New
(
"mean",
mesh_,
dimensionedScalar(dimless, Zero)
)
);
volScalarField& mean = tMean.ref();
setDimensions(mean, momentType::mean);
volScalarField totalConcentration(this->totalConcentration());
forAll(popBal_.sizeGroups(), i)
{
const Foam::diameterModels::sizeGroup& fi = popBal_.sizeGroups()[i];
volScalarField concentration(fi*fi.phase()/fi.x());
switch (weightType_)
{
case weightType::volumeConcentration:
{
concentration *= fi.x();
break;
}
case weightType::areaConcentration:
{
concentration *= fi.a();
break;
}
default:
{
break;
}
}
switch (meanType_)
{
case meanType::geometric:
{
mean.dimensions().reset(dimless);
switch (coordinateType_)
{
case coordinateType::volume:
{
dimensionedScalar unitVolume(dimVolume, 1);
mean +=
Foam::log(fi.x()/unitVolume)
*concentration/totalConcentration;
break;
}
case coordinateType::area:
{
dimensionedScalar unitArea(dimArea, 1);
mean +=
Foam::log(fi.a()/unitArea)
*concentration/totalConcentration;
break;
}
case coordinateType::diameter:
{
dimensionedScalar unitLength(dimLength, 1);
mean +=
Foam::log(fi.d()/unitLength)
*concentration/totalConcentration;
break;
}
}
break;
}
default:
{
switch (coordinateType_)
{
case coordinateType::volume:
{
mean += fi.x()*concentration/totalConcentration;
break;
}
case coordinateType::area:
{
mean += fi.a()*concentration/totalConcentration;
break;
}
case coordinateType::diameter:
{
mean += fi.d()*concentration/totalConcentration;
break;
}
}
break;
}
}
}
if (meanType_ == meanType::geometric)
{
mean = exp(mean);
setDimensions(mean, momentType::mean);
}
return tMean;
}
Foam::tmp<Foam::volScalarField>
Foam::functionObjects::populationBalanceMoments::variance()
{
tmp<volScalarField> tVariance
(
volScalarField::New
(
"variance",
mesh_,
dimensionedScalar(dimless, Zero)
)
);
volScalarField& variance = tVariance.ref();
setDimensions(variance, momentType::variance);
volScalarField totalConcentration(this->totalConcentration());
volScalarField mean(this->mean());
forAll(popBal_.sizeGroups(), i)
{
const Foam::diameterModels::sizeGroup& fi = popBal_.sizeGroups()[i];
volScalarField concentration(fi*fi.phase()/fi.x());
switch (weightType_)
{
case weightType::volumeConcentration:
{
concentration *= fi.x();
break;
}
case weightType::areaConcentration:
{
concentration *= fi.a();
break;
}
default:
{
break;
}
}
switch (meanType_)
{
case meanType::geometric:
{
switch (coordinateType_)
{
case coordinateType::volume:
{
variance +=
sqr(Foam::log(fi.x()/mean))
*concentration/totalConcentration;
break;
}
case coordinateType::area:
{
variance +=
sqr(Foam::log(fi.a()/mean))
*concentration/totalConcentration;
break;
}
case coordinateType::diameter:
{
variance +=
sqr(Foam::log(fi.d()/mean))
*concentration/totalConcentration;
break;
}
}
break;
}
default:
{
switch (coordinateType_)
{
case coordinateType::volume:
{
variance +=
sqr(fi.x() - mean)*concentration/totalConcentration;
break;
}
case coordinateType::area:
{
variance +=
sqr(fi.a() - mean)*concentration/totalConcentration;
break;
}
case coordinateType::diameter:
{
variance +=
sqr(fi.d() - mean)*concentration/totalConcentration;
break;
}
}
break;
}
}
}
return tVariance;
}
Foam::tmp<Foam::volScalarField>
Foam::functionObjects::populationBalanceMoments::stdDev()
{
switch (meanType_)
{
case meanType::geometric:
{
return exp(sqrt(this->variance()));
}
default:
{
return sqrt(this->variance());
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::populationBalanceMoments::populationBalanceMoments
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
fvMeshFunctionObject(name, runTime, dict),
popBal_
(
obr_.lookupObject<Foam::diameterModels::populationBalanceModel>
(
dict.lookup("populationBalance")
)
),
momentType_(momentTypeNames_.read(dict.lookup("momentType"))),
coordinateType_(coordinateTypeNames_.read(dict.lookup("coordinateType"))),
weightType_
(
dict.found("weightType")
? weightTypeNames_.read(dict.lookup("weightType"))
: weightType::numberConcentration
),
meanType_(meanType::notApplicable),
order_(-1),
fldPtr_(nullptr)
{
read(dict);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::functionObjects::populationBalanceMoments::~populationBalanceMoments()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool
Foam::functionObjects::populationBalanceMoments::read(const dictionary& dict)
{
fvMeshFunctionObject::read(dict);
switch (momentType_)
{
case momentType::integerMoment:
{
order_ = dict.lookup<int>("order");
break;
}
default:
{
meanType_ =
dict.found("meanType")
? meanTypeNames_.read(dict.lookup("meanType"))
: meanType::arithmetic;
break;
}
}
switch (momentType_)
{
case momentType::integerMoment:
{
fldPtr_.set
(
new volScalarField
(
IOobject
(
this->integerMomentFldName(),
mesh_.time().name(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
dimensionedScalar(dimless, Zero)
)
);
volScalarField& integerMoment = fldPtr_();
setDimensions(integerMoment, momentType::integerMoment);
break;
}
case momentType::mean:
{
fldPtr_.set
(
new volScalarField
(
IOobject
(
this->defaultFldName(),
mesh_.time().name(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
this->mean()
)
);
break;
}
case momentType::variance:
{
fldPtr_.set
(
new volScalarField
(
IOobject
(
this->defaultFldName(),
mesh_.time().name(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
this->variance()
)
);
break;
}
case momentType::stdDev:
{
fldPtr_.set
(
new volScalarField
(
IOobject
(
this->defaultFldName(),
mesh_.time().name(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
this->stdDev()
)
);
break;
}
}
return true;
}
bool Foam::functionObjects::populationBalanceMoments::execute()
{
switch (momentType_)
{
case momentType::integerMoment:
{
volScalarField& integerMoment = fldPtr_();
integerMoment = Zero;
forAll(popBal_.sizeGroups(), i)
{
const Foam::diameterModels::sizeGroup& fi =
popBal_.sizeGroups()[i];
volScalarField concentration(fi*fi.phase()/fi.x());
switch (weightType_)
{
case weightType::volumeConcentration:
{
concentration *= fi.x();
break;
}
case weightType::areaConcentration:
{
concentration *= fi.a();
break;
}
default:
{
break;
}
}
switch (coordinateType_)
{
case coordinateType::volume:
{
integerMoment +=
pow(fi.x(), order_)*concentration;
break;
}
case coordinateType::area:
{
integerMoment +=
pow(fi.a(), order_)*concentration;
break;
}
case coordinateType::diameter:
{
integerMoment +=
pow(fi.d(), order_)*concentration;
break;
}
}
}
break;
}
case momentType::mean:
{
fldPtr_() = this->mean();
break;
}
case momentType::variance:
{
fldPtr_() = this->variance();
break;
}
case momentType::stdDev:
{
fldPtr_() = sqrt(this->variance());
break;
}
}
return true;
}
bool Foam::functionObjects::populationBalanceMoments::write()
{
writeObject(fldPtr_->name());
return true;
}
// ************************************************************************* //