Files
OpenFOAM-12/applications/modules/twoPhaseSolver/alphaPredictor.C
Henry Weller 0ed84ff137 compressibleVoF,multiphaseEuler: Renamed compressibility dilatation dgdt to vDot
Currently in compressibleVoF vDot contains only the compressibility dilatation
effect whereas in multiphaseEuler the effect of sources are also included but
this will be refactored shortly so that the handling of mass sources and
compressibility is consistent between VoF and Euler-Euler solvers.

The previously hard-coded 1e-4 division stabilisation used when linearising vDot
for bounded semi-implicit solution of the phase-fractions is now an optional
user-input with keyword vDotResidualAlpha, e.g. in multiphaseEuler:

solvers
{
    "alpha.*"
    {
        nAlphaCorr          1;
        nAlphaSubCycles     2;
        vDotResidualAlpha   1e-6;
    }
    .
    .
    .
2023-11-03 13:19:52 +00:00

432 lines
12 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "twoPhaseSolver.H"
#include "subCycle.H"
#include "interfaceCompression.H"
#include "CMULES.H"
#include "CrankNicolsonDdtScheme.H"
#include "fvcFlux.H"
#include "fvmSup.H"
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::surfaceScalarField> Foam::solvers::twoPhaseSolver::alphaPhi
(
const surfaceScalarField& phi,
const volScalarField& alpha,
const dictionary& alphaControls
)
{
const word alphaScheme(mesh.schemes().div(divAlphaName)[1].wordToken());
ITstream compressionScheme
(
compressionSchemes.found(alphaScheme)
? mesh.schemes().div(divAlphaName)
: ITstream
(
divAlphaName,
tokenList
{
word("Gauss"),
word("interfaceCompression"),
alphaScheme,
alphaControls.lookup<scalar>("cAlpha")
}
)
);
return fvc::flux
(
phi,
alpha,
compressionScheme
);
}
void Foam::solvers::twoPhaseSolver::alphaSolve
(
const dictionary& alphaControls
)
{
const label nAlphaSubCycles(alphaControls.lookup<label>("nAlphaSubCycles"));
const label nAlphaCorr(alphaControls.lookup<label>("nAlphaCorr"));
const bool MULESCorr
(
alphaControls.lookupOrDefault<Switch>("MULESCorr", false)
);
// Apply the compression correction from the previous iteration
// Improves efficiency for steady-simulations but can only be applied
// once the alpha field is reasonably steady, i.e. fully developed
const bool alphaApplyPrevCorr
(
alphaControls.lookupOrDefault<Switch>("alphaApplyPrevCorr", false)
);
// Set the off-centering coefficient according to ddt scheme
scalar ocCoeff = 0;
{
tmp<fv::ddtScheme<scalar>> tddtAlpha
(
fv::ddtScheme<scalar>::New
(
mesh,
mesh.schemes().ddt("ddt(alpha)")
)
);
const fv::ddtScheme<scalar>& ddtAlpha = tddtAlpha();
if
(
isType<fv::EulerDdtScheme<scalar>>(ddtAlpha)
|| isType<fv::localEulerDdtScheme<scalar>>(ddtAlpha)
)
{
ocCoeff = 0;
}
else if (isType<fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha))
{
if (nAlphaSubCycles > 1)
{
FatalErrorInFunction
<< "Sub-cycling is not supported "
"with the CrankNicolson ddt scheme"
<< exit(FatalError);
}
if
(
alphaRestart
|| mesh.time().timeIndex() > mesh.time().startTimeIndex() + 1
)
{
ocCoeff =
refCast<const fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha)
.ocCoeff();
}
}
else
{
FatalErrorInFunction
<< "Only Euler and CrankNicolson ddt schemes are supported"
<< exit(FatalError);
}
}
// Set the time blending factor, 1 for Euler
const scalar cnCoeff = 1.0/(1.0 + ocCoeff);
tmp<surfaceScalarField> phiCN(phi);
// Calculate the Crank-Nicolson off-centred volumetric flux
if (ocCoeff > 0)
{
phiCN = surfaceScalarField::New
(
"phiCN",
cnCoeff*phi + (1.0 - cnCoeff)*phi.oldTime()
);
}
tmp<volScalarField> divU;
if (divergent())
{
divU =
(
mesh.moving()
? fvc::div(phiCN() + mesh.phi())
: fvc::div(phiCN())
);
}
tmp<volScalarField::Internal> Su;
tmp<volScalarField::Internal> Sp;
alphaSuSp(Su, Sp, alphaControls);
if (MULESCorr)
{
fvScalarMatrix alpha1Eqn
(
(
LTS
? fv::localEulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
: fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
)
+ fv::gaussConvectionScheme<scalar>
(
mesh,
phiCN,
upwind<scalar>(mesh, phiCN)
).fvmDiv(phiCN, alpha1)
);
if (divU.valid())
{
alpha1Eqn -= Su() + fvm::Sp(Sp() + divU(), alpha1);
}
alpha1Eqn.solve();
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
tmp<surfaceScalarField> talphaPhi1UD(alpha1Eqn.flux());
alphaPhi1 = talphaPhi1UD();
if (alphaApplyPrevCorr && talphaPhi1Corr0.valid())
{
Info<< "Applying the previous iteration compression flux" << endl;
MULES::correct
(
geometricOneField(),
alpha1,
alphaPhi1,
talphaPhi1Corr0.ref(),
oneField(),
zeroField()
);
alphaPhi1 += talphaPhi1Corr0();
}
// Cache the upwind-flux
talphaPhi1Corr0 = talphaPhi1UD;
alpha2 = 1.0 - alpha1;
correctInterface();
}
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
{
tmp<volScalarField> talpha1CN(alpha1);
if (ocCoeff > 0)
{
// Preserve the BCs of alpha1 in alpha1CN for interpolation
talpha1CN = alpha1.clone();
talpha1CN.ref() ==
(cnCoeff*alpha1 + (1.0 - cnCoeff)*alpha1.oldTime())();
}
// Split operator
tmp<surfaceScalarField> talphaPhi1Un
(
alphaPhi
(
phiCN(),
talpha1CN(),
alphaControls
)
);
if (MULESCorr)
{
tmp<surfaceScalarField> talphaPhi1Corr(talphaPhi1Un() - alphaPhi1);
volScalarField alpha10("alpha10", alpha1);
if (divU.valid())
{
MULES::correct
(
geometricOneField(),
alpha1,
talphaPhi1Un(),
talphaPhi1Corr.ref(),
(Sp() + divU())(),
(-(Sp() + divU())*alpha1)(),
oneField(),
zeroField()
);
}
else
{
MULES::correct
(
geometricOneField(),
alpha1,
talphaPhi1Un(),
talphaPhi1Corr.ref(),
oneField(),
zeroField()
);
}
// Under-relax the correction for all but the 1st corrector
if (aCorr == 0)
{
alphaPhi1 += talphaPhi1Corr();
}
else
{
alpha1 = 0.5*alpha1 + 0.5*alpha10;
alphaPhi1 += 0.5*talphaPhi1Corr();
}
}
else
{
alphaPhi1 = talphaPhi1Un;
if (divU.valid())
{
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phiCN,
alphaPhi1,
Sp(),
(Su() + divU()*min(alpha1(), scalar(1)))(),
oneField(),
zeroField()
);
}
else
{
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phiCN,
alphaPhi1,
oneField(),
zeroField()
);
}
}
alpha2 = 1.0 - alpha1;
// Correct only the mixture interface for the interface compression flux
correctInterface();
}
if (alphaApplyPrevCorr && MULESCorr)
{
talphaPhi1Corr0 = alphaPhi1 - talphaPhi1Corr0;
// Register alphaPhiCorr0.<phase1> for redistribution
talphaPhi1Corr0.ref().rename
(
IOobject::groupName("alphaPhiCorr0", alpha1.group())
);
talphaPhi1Corr0.ref().checkIn();
}
else
{
talphaPhi1Corr0.clear();
}
if
(
word(mesh.schemes().ddt("ddt(rho,U)"))
!= fv::EulerDdtScheme<vector>::typeName
&& word(mesh.schemes().ddt("ddt(rho,U)"))
!= fv::localEulerDdtScheme<vector>::typeName
)
{
if (ocCoeff > 0)
{
// Calculate the end-of-time-step alpha flux
alphaPhi1 =
(alphaPhi1 - (1.0 - cnCoeff)*alphaPhi1.oldTime())/cnCoeff;
}
}
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
}
void Foam::solvers::twoPhaseSolver::alphaPredictor()
{
const dictionary& alphaControls = mesh.solution().solverDict(alpha1.name());
const label nAlphaSubCycles(alphaControls.lookup<label>("nAlphaSubCycles"));
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
tmp<volScalarField> trSubDeltaT;
if (LTS)
{
trSubDeltaT =
fv::localEulerDdt::localRSubDeltaT(mesh, nAlphaSubCycles);
}
// Create a temporary alphaPhi1 to accumulate the sub-cycled alphaPhi1
tmp<surfaceScalarField> talphaPhi1
(
surfaceScalarField::New
(
"alphaPhi1",
mesh,
dimensionedScalar(alphaPhi1.dimensions(), 0)
)
);
List<volScalarField*> alphaPtrs({&alpha1, &alpha2});
for
(
subCycle<volScalarField, subCycleFields> alphaSubCycle
(
alphaPtrs,
nAlphaSubCycles
);
!(++alphaSubCycle).end();
)
{
alphaSolve(alphaControls);
talphaPhi1.ref() += (runTime.deltaT()/totalDeltaT)*alphaPhi1;
}
alphaPhi1 = talphaPhi1();
}
else
{
alphaSolve(alphaControls);
}
}
// ************************************************************************* //