The initial set of cases in the test directory are aimed at testing the reactingEulerFoam populationBalance functionality. Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR) and VTT Technical Research Centre of Finland Ltd. Integrated with the "tutorials" functionality by CFD Direct Ltd.
48 lines
1.1 KiB
Gnuplot
Executable File
48 lines
1.1 KiB
Gnuplot
Executable File
#!/usr/bin/gnuplot
|
|
|
|
set terminal postscript eps monochrome
|
|
set output "numberDensity.eps"
|
|
set decimalsign "."
|
|
|
|
set format xy '%g'
|
|
set xtics 1e2 mirror
|
|
set xlabel 'v(m^{3})'
|
|
set ytics 1e5 mirror
|
|
set ylabel 'n(m^{-3}m^{-3})'
|
|
|
|
set logscale xy
|
|
set xrange [1e-5:1e2]
|
|
set yrange [1e-15:100]
|
|
set key center left
|
|
|
|
C = 1
|
|
N0 = 2.5
|
|
v0 = 0.01
|
|
|
|
# Dimensionless volume
|
|
X(x) = x/v0
|
|
|
|
# Initial condition
|
|
n0(x) = (N0/v0)*X(x)*exp(-X(x))
|
|
|
|
T(t) = C*N0*t
|
|
|
|
# For solution of quadratic saddle point equation
|
|
p(x) = -1/X(x)
|
|
q(t) = -(T(t)/(T(t) + 2))
|
|
|
|
# Saddle point calculation
|
|
y_s(t,x) = -p(x)/2 + sqrt((p(x)/2)**2 - q(T(t)))
|
|
|
|
# Dimensionless spectrum function
|
|
phi(x,t) = (8*exp((y_s(t,x) - 1)*X(x)*2))/(((T(t) + 2)**2)*y_s(t,x)*(4*pi*(2 - 1/(y_s(t,x)*X(x)))))
|
|
|
|
# Number density at time t
|
|
n(x,t) = (N0/v0)*phi(x,t)
|
|
|
|
plot n0(x) ls -1 t 'Initial Condition',\
|
|
n(x,10.0) ls 2 lc rgb 'black' t 'Scott (1968)',\
|
|
'box.all.numberDensity.volume.bubbles.transposed.dat' every ::0::46 u 1:2 w p pt 1 t 'air1',\
|
|
'box.all.numberDensity.volume.bubbles.transposed.dat' every ::47::55 u 1:2 w p pt 5 t 'air2',\
|
|
'box.all.numberDensity.volume.bubbles.transposed.dat' every ::56::70 u 1:2 w p pt 9 t 'air3'
|