Files
Will Bainbridge b9d7740e1f reactingEulerFoam: Update and instantiate interface composition models
The nonRandomTwoLiquid and Roult interface composition models have been
instantiated (and updated so that they compile), and a fuller set of
multi-component liquids and multi-component and reacting gases have been
used.

The selection name of the saturated and nonRandomTwoLiquid models have
also been changed to remove the capitalisation from the first letter, as
is consistent with other sub-models that are not proper nouns.
2018-04-09 09:58:00 +01:00

268 lines
6.9 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015-2018 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "NonRandomTwoLiquid.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class Thermo, class OtherThermo>
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::
NonRandomTwoLiquid
(
const dictionary& dict,
const phasePair& pair
)
:
InterfaceCompositionModel<Thermo, OtherThermo>(dict, pair),
gamma1_
(
IOobject
(
IOobject::groupName("gamma1", pair.name()),
pair.phase1().mesh().time().timeName(),
pair.phase1().mesh()
),
pair.phase1().mesh(),
dimensionedScalar("one", dimless, 1)
),
gamma2_
(
IOobject
(
IOobject::groupName("gamma2", pair.name()),
pair.phase1().mesh().time().timeName(),
pair.phase1().mesh()
),
pair.phase1().mesh(),
dimensionedScalar("one", dimless, 1)
),
beta12_("", dimless/dimTemperature, 0),
beta21_("", dimless/dimTemperature, 0)
{
if (this->speciesNames_.size() != 2)
{
FatalErrorInFunction
<< "NonRandomTwoLiquid model is suitable for two species only."
<< exit(FatalError);
}
species1Name_ = this->speciesNames_[0];
species2Name_ = this->speciesNames_[1];
species1Index_ = this->thermo_.composition().species()[species1Name_];
species2Index_ = this->thermo_.composition().species()[species2Name_];
alpha12_ = dimensionedScalar
(
"alpha12",
dimless,
dict.subDict(species1Name_).lookup("alpha")
);
alpha21_ = dimensionedScalar
(
"alpha21",
dimless,
dict.subDict(species2Name_).lookup("alpha")
);
beta12_ = dimensionedScalar
(
"beta12",
dimless/dimTemperature,
dict.subDict(species1Name_).lookup("beta")
);
beta21_ = dimensionedScalar
(
"beta21",
dimless/dimTemperature,
dict.subDict(species2Name_).lookup("beta")
);
saturationModel12_.reset
(
saturationModel::New
(
dict.subDict(species1Name_).subDict("interaction"),
pair.phase1().mesh()
).ptr()
);
saturationModel21_.reset
(
saturationModel::New
(
dict.subDict(species2Name_).subDict("interaction"),
pair.phase1().mesh()
).ptr()
);
speciesModel1_.reset
(
interfaceCompositionModel::New
(
dict.subDict(species1Name_),
pair
).ptr()
);
speciesModel2_.reset
(
interfaceCompositionModel::New
(
dict.subDict(species2Name_),
pair
).ptr()
);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class Thermo, class OtherThermo>
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::
~NonRandomTwoLiquid()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
template<class Thermo, class OtherThermo>
void
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::
update
(
const volScalarField& Tf
)
{
volScalarField W(this->thermo_.W());
volScalarField X1
(
this->thermo_.composition().Y(species1Index_)
*W
/this->thermo_.composition().W(species1Index_)
);
volScalarField X2
(
this->thermo_.composition().Y(species2Index_)
*W
/this->thermo_.composition().W(species2Index_)
);
volScalarField alpha12(alpha12_ + Tf*beta12_);
volScalarField alpha21(alpha21_ + Tf*beta21_);
volScalarField tau12(saturationModel12_->lnPSat(Tf));
volScalarField tau21(saturationModel21_->lnPSat(Tf));
volScalarField G12(exp(- alpha12*tau12));
volScalarField G21(exp(- alpha21*tau21));
gamma1_ =
exp
(
sqr(X2)
*(
tau21*sqr(G21)/max(sqr(X1 + X2*G21), small)
+ tau12*G12/max(sqr(X2 + X1*G12), small)
)
);
gamma2_ =
exp
(
sqr(X1)
*(
tau12*sqr(G12)/max(sqr(X2 + X1*G12), small)
+ tau21*G21/max(sqr(X1 + X2*G21), small)
)
);
}
template<class Thermo, class OtherThermo>
Foam::tmp<Foam::volScalarField>
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::Yf
(
const word& speciesName,
const volScalarField& Tf
) const
{
if (speciesName == species1Name_)
{
return
this->otherThermo_.composition().Y(speciesName)
*speciesModel1_->Yf(speciesName, Tf)
*gamma1_;
}
else if (speciesName == species2Name_)
{
return
this->otherThermo_.composition().Y(speciesName)
*speciesModel2_->Yf(speciesName, Tf)
*gamma2_;
}
else
{
return
this->thermo_.composition().Y(speciesName)
*(scalar(1) - Yf(species1Name_, Tf) - Yf(species2Name_, Tf));
}
}
template<class Thermo, class OtherThermo>
Foam::tmp<Foam::volScalarField>
Foam::interfaceCompositionModels::NonRandomTwoLiquid<Thermo, OtherThermo>::
YfPrime
(
const word& speciesName,
const volScalarField& Tf
) const
{
if (speciesName == species1Name_)
{
return
this->otherThermo_.composition().Y(speciesName)
*speciesModel1_->YfPrime(speciesName, Tf)
*gamma1_;
}
else if (speciesName == species2Name_)
{
return
this->otherThermo_.composition().Y(speciesName)
*speciesModel2_->YfPrime(speciesName, Tf)
*gamma2_;
}
else
{
return
- this->thermo_.composition().Y(speciesName)
*(YfPrime(species1Name_, Tf) + YfPrime(species2Name_, Tf));
}
}
// ************************************************************************* //